
Daredevil: Rescue Your Flash Storage 
from Inflexible Kernel Storage Stack

Junzhe Li, Ran Shu, Jiayi Lin, Qingyu Zhang, Ziyue Yang, Jie Zhang, 

Yongqiang Xiong, Chenxiong Qian

1



I/O Services: In the Face of Diversity

2

…

Cloud 

Server

Fast I/O 

Services

…

PCIe Bus



3

…
Tenants

I/O Services: In the Face of Diversity

Cloud 

Server

Fast I/O 

Services

…

PCIe Bus

* Processes that require I/O services (e.g., containers) are referred to as “tenants”.



4

…

L-Tenant

Tenants

I/O Services: In the Face of Diversity

Latency-sensitive 

(L-tenants)

Cloud 

Server

Fast I/O 

Services

…

PCIe Bus

* Processes that require I/O services (e.g., containers) are referred to as “tenants”.



5

…

L-Tenant T-Tenant

Tenants

I/O Services: In the Face of Diversity

Latency-sensitive 

(L-tenants)
Throughput-oriented 

(T-tenants)

Cloud 

Server

Fast I/O 

Services

…

PCIe Bus

* Processes that require I/O services (e.g., containers) are referred to as “tenants”.



6

Cloud 

Server

Fast I/O 

Services

…

…

PCIe Bus

L-Tenant T-Tenant

Tenants

I/O Services: In the Face of Diversity

Latency-sensitive 

(L-tenants)
Throughput-oriented 

(T-tenants)

• Low latency: us-level • High throughput: GB-level

* Processes that require I/O services (e.g., containers) are referred to as “tenants”.



7

Cloud 

Server

Fast I/O 

Services

…

…

PCIe Bus

L-Tenant T-Tenant

Tenants

I/O Services: In the Face of Diversity

Latency-sensitive 

(L-tenants)
Throughput-oriented 

(T-tenants)

• Low latency: us-level • High throughput: GB-level

Can NVMe SSDs indeed satisfy the 

diverse needs of L- and T-tenants?



8

Local NVMe SSDs

…NVMe 

SSD

NVMe 

SSD

L-Tenant

Linux Kernel 

Storage Stack

(Simplified)

…User 

Space

Kernel 

Space

T-Tenant

VFS/FS

Block Layer

NVMe Driver

I/O Services: In the Eyes of the Kernel



9

Local NVMe SSDs

…NVMe 

SSD

NVMe 

SSD

L-Tenant

Linux Kernel 

Storage Stack

(Simplified)

…User 

Space

Kernel 

Space

T-Tenant

VFS/FS

Block Layer

NVMe Driver

Block layer – Where 

generic I/O scheduling 

operations happen.

I/O Services: In the Eyes of the Kernel



10

Kernel Storage Stack: blk-mq Structure

NVMe SSDs support multiple NVMe I/O queues (NQs)

• Used for kernel-SSD I/O interactions

• Parallel access supported



11

Kernel Storage Stack: blk-mq Structure

NVMe SSDs support multiple NVMe I/O queues (NQs)

• Used for kernel-SSD I/O interactions

• Parallel access supported

NVMe 

SSD



12

Multi-Queue Block IO Queueing Mechanism 

(blk-mq):

NVMe 

SSD

Kernel Storage Stack: blk-mq Structure

NVMe SSDs support multiple NVMe I/O queues (NQs)

• Used for kernel-SSD I/O interactions

• Parallel access supported



13

Multi-Queue Block IO Queueing Mechanism 

(blk-mq):

• Software queues (SQs): one per CPU core
NVMe 

SSD

Kernel Storage Stack: blk-mq Structure

NVMe SSDs support multiple NVMe I/O queues (NQs)

• Used for kernel-SSD I/O interactions

• Parallel access supported



14

Multi-Queue Block IO Queueing Mechanism 

(blk-mq):

• Software queues (SQs): one per CPU core

• Hardware queues (HQs): one per NQ
NVMe 

SSD

Kernel Storage Stack: blk-mq Structure

NVMe SSDs support multiple NVMe I/O queues (NQs)

• Used for kernel-SSD I/O interactions

• Parallel access supported



15

Multi-Queue Block IO Queueing Mechanism 

(blk-mq):

• Software queues (SQs): one per CPU core

• Hardware queues (HQs): one per NQ

• Static bindings between SQs and HQs

NVMe 

SSD

Kernel Storage Stack: blk-mq Structure

NVMe SSDs support multiple NVMe I/O queues (NQs)

• Used for kernel-SSD I/O interactions

• Parallel access supported



16

Multi-Queue Block IO Queueing Mechanism 

(blk-mq):

• Software queues (SQs): one per CPU core

• Hardware queues (HQs): one per NQ

• Static bindings between SQs and HQs

Kernel Storage Stack: blk-mq Structure

NVMe SSDs support multiple NVMe I/O queues (NQs)

• Used for kernel-SSD I/O interactions

• Parallel access supported

NVMe 

SSD

I/O flow: CPU core → SQ → HQ → NQ



17

Kernel Storage Stack: blk-mq Structure

NVMe 

SSD

…

NVMe 

SSD

Essence of blk-mq:

Static CPU-NQ bindingsStatic SQ-NQ bindings

Kernel 

Storage 

Stack



18

Kernel Storage Stack: blk-mq Structure

NVMe 

SSD

…

NVMe 

SSD

Essence of blk-mq:

Static CPU-NQ bindingsStatic SQ-NQ bindings

• Maintenance

• Parallelism/Concurrency

Kernel 

Storage 

Stack



19

Kernel Storage Stack: blk-mq Structure

NVMe 

SSD

…

NVMe 

SSD

Essence of blk-mq:

Static CPU-NQ bindingsStatic SQ-NQ bindings

• Maintenance

• Parallelism/Concurrency

• But…! Troublesome in 

cloud servers

Kernel 

Storage 

Stack



20

: Throughput-oriented tenants (T-tenant)T

L : Latency-sensitive tenants (L-tenant)

I/O Services: Within the blk-mq Structure

TL

…

LT

Common CPU sharing among L- 

and T-tenants.



21

: Throughput-oriented tenants (T-tenant)T

L : Latency-sensitive tenants (L-tenant)

I/O Services: Within the blk-mq Structure

TL

NQs

Kernel 

Storage 

Stack

…

…

LT

Common CPU sharing among L- 

and T-tenants.



22

: Throughput-oriented tenants (T-tenant)T

L : Latency-sensitive tenants (L-tenant)

I/O Services: Within the blk-mq Structure

TL

NQs

Kernel 

Storage 

Stack

…

…

LT

I/O Size

Processing Time

Small

Quick

Large

Slow

L-requests T-requests

Common CPU sharing among L- 

and T-tenants.



23

: Throughput-oriented tenants (T-tenant)T

L : Latency-sensitive tenants (L-tenant)

I/O Services: Within the blk-mq Structure

TL

NQs

Kernel 

Storage 

Stack

…

…

LT

I/O Size

Processing Time

Small

Quick

Large

Slow

L-requests T-requests

Head-of-line (HOL) 

blocking from T-requests!

Common CPU sharing among L- 

and T-tenants.



24

• w/ Interfere: L- and T-tenants served 

within the same NQs.

• w/o Interfere: L- and T-tenants served 

by separate NQs.

I/O Services: Evidencing HOL Blocking

Experiment:



25

• w/ Interfere: L- and T-tenants served 

within the same NQs.

• w/o Interfere: L- and T-tenants served 

by separate NQs.

I/O Services: Evidencing HOL Blocking

Experiment:

3x/15x increase in tail/average 

latency with HOL T-requests.



26

• w/ Interfere: L- and T-tenants served 

within the same NQs.

• w/o Interfere: L- and T-tenants served 

by separate NQs.

I/O Services: Evidencing HOL Blocking

Experiment:

The multi-tenancy issue: In NVMe SSDs, the performance of L-requests can 

be severely impacted by the HOL T-requests within the same NQs.



27

• w/ Interfere: L- and T-tenants served 

within the same NQs.

• w/o Interfere: L- and T-tenants served 

by separate NQs.

I/O Services: Evidencing HOL Blocking

Experiment:

The multi-tenancy issue: In NVMe SSDs, the performance of L-requests can 

be severely impacted by the HOL T-requests within the same NQs.

How can we solve this issue within the kernel storage stack? 



28

Static blk-mq: Constrained Optimization

Clear solution: NQ-level separation of L- and T-requests.



29

Static blk-mq: Constrained Optimization

Clear solution: NQ-level separation of L- and T-requests.

TL

…

…

NQ overprovision:

FlashShare (OSDI’18), D2FQ (FAST’21)



30

Static blk-mq: Constrained Optimization

Clear solution: NQ-level separation of L- and T-requests.

TL

…

…

NQ overprovision:

FlashShare (OSDI’18), D2FQ (FAST’21)

Simple & Direct

Underutilization & HW constraints



31

Static blk-mq: Constrained Optimization

Clear solution: NQ-level separation of L- and T-requests.

TL

…

…

NQ overprovision:

FlashShare (OSDI’18), D2FQ (FAST’21)

Simple & Direct

Underutilization & HW constraints

TL

…

…
T

blk-switch (OSDI’21)

Cross-core scheduling:



32

Static blk-mq: Constrained Optimization

Clear solution: NQ-level separation of L- and T-requests.

TL

…

…

NQ overprovision:

FlashShare (OSDI’18), D2FQ (FAST’21)

Simple & Direct

Underutilization & HW constraints

TL

…

…
T

blk-switch (OSDI’21)

Cross-core scheduling:

Utilization & Generality

CPU intervention



33

Static blk-mq: Constrained Optimization

Clear solution: NQ-level separation of L- and T-requests.

TL

…

…

NQ overprovision:

FlashShare (OSDI’18), D2FQ (FAST’21)

Simple & Direct

Underutilization & HW constraints

TL

…

…
T

blk-switch (OSDI’21)

Cross-core scheduling:

Utilization & Generality

CPU intervention

Root cause: static CPU-NQ bindings



34

Static blk-mq: Constrained Optimization

Clear solution: NQ-level separation of L- and T-requests.

TL

…

…

NQ overprovision:

FlashShare (OSDI’18), D2FQ (FAST’21)

Simple & Direct

Underutilization & HW constraints

TL

…

…
T

blk-switch (OSDI’21)

Cross-core scheduling:

Utilization & Generality

CPU intervention

Root cause: static CPU-NQ bindings

Can we still get flexibility and efficiency?



35

Daredevil: Here Comes the Rescue

Core idea: Decoupling of CPU-NQ bindings.



36

Daredevil: Here Comes the Rescue

Core idea: Decoupling of CPU-NQ bindings.

NQs

blk-mq based storage stack

…

…

NQs …

Daredevil storage stack

Decoupling

…



37

Daredevil: Here Comes the Rescue

Core idea: Decoupling of CPU-NQ bindings.

NQs

blk-mq based storage stack

…

…

NQs …

Daredevil storage stack

Decoupling

…

TL LT TL LT



38

Daredevil: Here Comes the Rescue

Core idea: Decoupling of CPU-NQ bindings.

NQs

blk-mq based storage stack

…

…

NQs …

Daredevil storage stack

Decoupling

…

TL LT TL LT

Re-routing



39

Daredevil: Here Comes the Rescue

Core idea: Decoupling of CPU-NQ bindings.

NQs …

Daredevil storage stack

…

TL LT

Re-routingTL

…

…
T

TL

…

…
FlashShare (OSDI’18) D2FQ (FAST’21)

blk-switch (OSDI’21)

Decoupling



40

Daredevil: Here Comes the Rescue

Core idea: Decoupling of CPU-NQ bindings.

NQs …

Daredevil storage stack

…

TL LT

Re-routing

• Full-connectivity between CPU cores and NQs.

• Independent & flexible policy for multi-tenancy 

control.

• Full utilization of NQs.



41

Daredevil: Here Comes the Rescue

Core idea: Decoupling of CPU-NQ bindings.

NQs …

Daredevil storage stack

…

TL LT

Re-routing

• Full-connectivity between CPU cores and NQs.

• Independent & flexible policy for multi-tenancy 

control.

• Full utilization of NQs.
But…At what cost?



42

Daredevil: Here Comes the Rescue

NQs …

Daredevil storage stack

…

TL LT

Re-routing

Challenge #1: Light-weight routing decisions for I/O requests. 

Where should I/O requests go?



43

Daredevil: Here Comes the Rescue

NQs …

…

TL LT

Re-routing

NQs …

…

TL LT

Challenge #1: Light-weight routing decisions for I/O requests. 

Solution #1: Tenant-based request routing. 



44

Daredevil: Here Comes the Rescue

NQs …

…

TL LT

Challenge #2: Performance assurance for NQ-level separation. 

How to ensure separation with 

guaranteed performance?



45

Daredevil: Here Comes the Rescue

NQs …

…

TL LT

Challenge #2: Performance assurance for NQ-level separation. 

… …

Solution #2: Heap-based performance-aware NQ scheduling. 

Logical NQ groups

TL LT



46

Daredevil: Here Comes the Rescue

NQs …

…

TL LT

Challenge #2: Performance assurance for NQ-level separation. 

… …

Solution #2: Heap-based performance-aware NQ scheduling. 

Logical NQ groups

Scheduling

TL LT



47

Daredevil: Here Comes the Rescue

NQs …

…

TL LT

Challenge #2: Performance assurance for NQ-level separation. 

… …

Solution #2: Heap-based performance-aware NQ scheduling. 

Logical NQ groups

Scheduling

TL LT



48

Daredevil: Here Comes the Rescue

• Tenant & outlier cases identification

• Scheduling criteria

• Light-weight concurrent scheduling

• I/O service acceleration

Design & implementation details:

Please refer to our paper for more details.



49

Evaluation: Efficient Multi-tenancy Support

Benchmark: FIO-based simulation for L- and T-tenants.



50

Evaluation: Efficient Multi-tenancy Support

3x & 27x reduction in tail & ave latency.

Benchmark: FIO-based simulation for L- and T-tenants.



51

Evaluation: Efficient Multi-tenancy Support

3x & 27x reduction in tail & ave latency. No I/O blocking.

Benchmark: FIO-based simulation for L- and T-tenants.



52

Evaluation: Efficient Multi-tenancy Support

3x & 27x reduction in tail & ave latency. No I/O blocking. Comparable thput.

Benchmark: FIO-based simulation for L- and T-tenants.



53

Evaluation: Ablation Study

Ablation of Daredevil: What contributions do its optimizations make?

• dare-base: only decoupling and round-robin request routing

• dare-sched: decoupling + NQ scheduling

• dare-full: dare-sched + I/O service acceleration



54

Evaluation: Ablation Study

• Decoupled block layer 

already achieves low latency.

Ablation of Daredevil: What contributions do its optimizations make?

• dare-base: only decoupling and round-robin request routing

• dare-sched: decoupling + NQ scheduling

• dare-full: dare-sched + I/O service acceleration



55

Evaluation: Ablation Study

Ablation of Daredevil: What contributions do its optimizations make?

• dare-base: only decoupling and round-robin request routing

• dare-sched: decoupling + NQ scheduling

• dare-full: dare-sched + I/O service acceleration

• Decoupled block layer 

already achieves low latency.

• NQ scheduling significantly 

contributes.



56

Evaluation: Ablation Study

• Decoupled block layer 

already achieves low latency.

• NQ scheduling significantly 

contributes.

• I/O service acceleration 

reduces tail latency.

Ablation of Daredevil: What contributions do its optimizations make?

• dare-base: only decoupling and round-robin request routing

• dare-sched: decoupling + NQ scheduling

• dare-full: dare-sched + I/O service acceleration



57

Discussion

Compatibility with virtual machines (VMs)?

• Not yet: processes inside VMs are invisible to the host.

Beyond NVMe SSDs to new devices?

• Possible: the multi-queue feature is maintained for CXL/ZNS SSDs.

Future road after Daredevil:

• Finer-grained performance isolation/consideration with cgroups.

• More comprehensive maintenance with CPU core scheduling.



58

Conclusion

• Daredevil is a wild research prototype to challenge the static Linux 

kernel storage stack.

• It achieves flexibility and efficiency with higher performance under 

multi-tenant I/O services. 

• Open sourced at: https://github.com/HKU-System-Security-

Lab/Daredevil

Please contact Junzhe Li (jzzzli@connect.hku.hk) for any questions!

mailto:jzzzli@connect.hku.hk


Thank you!

59


	Slide 1: Daredevil: Rescue Your Flash Storage from Inflexible Kernel Storage Stack
	Slide 2: I/O Services: In the Face of Diversity
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59: Thank you!

