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Can NVMe SSDs indeed satisfy the 

diverse needs of L- and T-tenants?
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Kernel Storage Stack: blk-mq Structure
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• Parallel access supported
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Multi-Queue Block IO Queueing Mechanism 
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Kernel Storage Stack: blk-mq Structure

NVMe SSDs support multiple NVMe I/O queues (NQs)

• Used for kernel-SSD I/O interactions

• Parallel access supported
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I/O flow: CPU core → SQ → HQ → NQ
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I/O Services: Evidencing HOL Blocking

Experiment:

The multi-tenancy issue: In NVMe SSDs, the performance of L-requests can 

be severely impacted by the HOL T-requests within the same NQs.

How can we solve this issue within the kernel storage stack? 
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Utilization & Generality

CPU intervention

Root cause: static CPU-NQ bindings

Can we still get flexibility and efficiency?
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Daredevil: Here Comes the Rescue

Core idea: Decoupling of CPU-NQ bindings.

NQs …

Daredevil storage stack
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TL LT

Re-routing

• Full-connectivity between CPU cores and NQs.

• Independent & flexible policy for multi-tenancy 

control.

• Full utilization of NQs.
But…At what cost?
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Challenge #1: Light-weight routing decisions for I/O requests. 

Where should I/O requests go?
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Challenge #1: Light-weight routing decisions for I/O requests. 

Solution #1: Tenant-based request routing. 
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Daredevil: Here Comes the Rescue

• Tenant & outlier cases identification

• Scheduling criteria

• Light-weight concurrent scheduling

• I/O service acceleration

Design & implementation details:

Please refer to our paper for more details.
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Evaluation: Efficient Multi-tenancy Support

Benchmark: FIO-based simulation for L- and T-tenants.
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Evaluation: Efficient Multi-tenancy Support

3x & 27x reduction in tail & ave latency. No I/O blocking. Comparable thput.

Benchmark: FIO-based simulation for L- and T-tenants.
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Evaluation: Ablation Study

Ablation of Daredevil: What contributions do its optimizations make?

• dare-base: only decoupling and round-robin request routing

• dare-sched: decoupling + NQ scheduling

• dare-full: dare-sched + I/O service acceleration
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Evaluation: Ablation Study

• Decoupled block layer 

already achieves low latency.

• NQ scheduling significantly 

contributes.

• I/O service acceleration 

reduces tail latency.

Ablation of Daredevil: What contributions do its optimizations make?

• dare-base: only decoupling and round-robin request routing

• dare-sched: decoupling + NQ scheduling

• dare-full: dare-sched + I/O service acceleration
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Discussion

Compatibility with virtual machines (VMs)?

• Not yet: processes inside VMs are invisible to the host.

Beyond NVMe SSDs to new devices?

• Possible: the multi-queue feature is maintained for CXL/ZNS SSDs.

Future road after Daredevil:

• Finer-grained performance isolation/consideration with cgroups.

• More comprehensive maintenance with CPU core scheduling.
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Conclusion

• Daredevil is a wild research prototype to challenge the static Linux 

kernel storage stack.

• It achieves flexibility and efficiency with higher performance under 

multi-tenant I/O services. 

• Open sourced at: https://github.com/HKU-System-Security-

Lab/Daredevil

Please contact Junzhe Li (jzzzli@connect.hku.hk) for any questions!

mailto:jzzzli@connect.hku.hk


Thank you!
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