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Abstract—Software libraries are foundational components in
modern software ecosystems. Vulnerabilities within these li-
braries pose significant security threats. Fuzzing is a widely used
technique for uncovering software vulnerabilities. However, its
application to software libraries poses considerable challenges,
necessitating carefully crafted drivers that reflect diverse yet
correct API usages. Existing works on automatic library fuzzing
either suffer from high false positives due to API misuse caused
by arbitrarily generated API sequences, or fail to produce
diverse API sequences by overly relying on existing code snippets
that express restricted API usages, thus missing deeper API
vulnerabilities.

This work proposes NEXZZER, a new fuzzer that automatically
detects vulnerabilities in libraries. NEXZZER employs a hybrid
relation learning strategy to continuously infer and evolve API
relations, incorporating a novel driver architecture to augment
the testing coverage of libraries and facilitate deep vulner-
ability discovery. We evaluated NEXZZER across 18 libraries
and the Google Fuzzer Test Suite. The results demonstrate
its considerable advantages in code coverage and vulnerability-
finding capabilities compared to prior works. NEXZZER can
also automatically identify and filter out most API misuse
crashes. Moreover, NEXZZER discovered 27 previously unknown
vulnerabilities in well-tested libraries, including OpenSSL and
libpcre2. At the time of writing, developers have confirmed 24
of them, and 9 were fixed because of our reports.

I. INTRODUCTION

Software libraries are essential components of the modern
software ecosystem. They provide reusable code modules to
facilitate software development, enabling developers to imple-
ment complex functionalities without reinventing the wheel.
Complex libraries like OpenSSL expose thousands of Appli-
cation Programming Interfaces (APIs), offering fundamental
capabilities for software applications. However, vulnerabilities
in these libraries introduce severe security risks [15], [29]. For
example, a recent vulnerability in OpenSSL allowed remote
code execution and could affect millions of infrastructure
software systems [2].

To uncover vulnerabilities inside libraries, fuzzing is a
widely used method. In the domain of library fuzzing, a crucial
component that determines the overall fuzzing effectiveness is
the fuzzing driver. A fuzzing driver bridges the fuzzing engine
and the target library, providing input data to API arguments
and establishing calling dependencies across library APIs.
Human experts can study the target API usage and manually
craft a fuzzing driver that properly constrains the input for
testing a library [1], [5], [25]. However, this requires extensive
effort to create and maintain the driver code, and it becomes
ineffective due to the extensive and continuously developing
APIs. In contrast to the manual approach, automated library
fuzzing has become a de facto approach [16], [15], [19],
[22], [26], [17], [21], [20], [29] to discovering vulnerabilities
because it saves manual labor and can scale to extensive APIs.

However, automated library fuzzing has been a difficult
research problem. In addition to the traditional fuzzing chal-
lenge of generating diverse inputs (i.e., API call sequences) to
uncover more crashes, there is a significant concern regarding
how to simulate real-world API usage to discover library
vulnerabilities, rather than merely triggering crashes caused
by API misuse. While both API vulnerabilities and misuse
can cause crashes, they have distinct causes and implications.
Vulnerabilities arise from design or implementation flaws
that developers need to address, whereas API misuse occurs
when library users (or driver code) do not follow the correct
programming patterns or intended usage. Library developers
typically do not address issues caused by API misuse because
they lack valid security implications.

The goal of library fuzzing is to generate diverse API
sequences that accurately reflect libraries’ real-world usage.
This creates a dilemma: we aim to assemble API call se-
quences in diverse ways to find vulnerabilities, yet we must
constrain the input spaces of these sequences to adhere to the
correct API usage acknowledged by developers. To address
this problem, a set of library fuzzing systems are proposed,
and they can generally be categorized into two types. The
first line of research trades diversity in fuzzing for accuracy.
They replicate the sequence orders from existing code snip-
pets (which we call API consumers) that invoke the target
APIs [16], [22], [17], [29], [21], [26]. Consequently, they
only mutate the API arguments. The other line of research
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adopts more aggressive mutations [15], [19], [20] for diversity.
These works can mutate API arguments and API invocation
orders together to detect more crashes. While they potentially
generate diverse and unseen API usage that uncovers more API
vulnerabilities, they also suffer from many API misuse crashes.
The overwhelming number of API misuse crashes, which
require manual efforts to validate, cause developer fatigue.

This work presents NEXZZER, a system that achieves both
high diversity and accuracy when generating API sequences
for testing libraries. Regarding diversity, NEXZZER implements
a novel driver architecture that is facilitated by an intermediate
API description, Liblang, cooperating with a general inter-
preter. This modular architecture allows the fuzzing engine
to freely arrange and constrain diverse API call sequences.
Moreover, it opens a window for the fuzzer to dynamically
adjust mutation strategies during fuzzing and gradually learns
implicit API relations. Implicit API relations are common in
software libraries. For example, an object deallocation API
(e.g., BN free in OpenSSL) should not precede other object
consumption APIs, and an initialization API (e.g., gmpz init
in libgmp) should always precede others. Such relations are
not explicit in the API prototype or apparent in static analysis
of consumer code but could significantly impact fuzzing
automation. While fuzzers can occasionally generate inputs
encoding these implicit dependencies, without understanding
these dependencies, the fuzzers cannot consistently generate
high-quality API sequences. Indeed, our evaluation demon-
strates that existing automatic library fuzzers cannot discover
and adhere to these relations well, resulting in inevitable API
misuse and heavy manual post-processing burdens, especially
when testing large-scale APIs.

To extract implicit API relations, NEXZZER incorporates a
novel relation learning stage. This stage works by tentatively
mutating APIs to observe the execution state changes and
reason the API relations from them. NEXZZER records APIs
and their relations into a dynamic graph structure named
APIGraph. During the learning stage, NEXZZER checks the
execution state changes against the mutated API sequences.
A transition between crashing and non-crashing execution, or
vice versa, indicates the existence of implicit dependencies in
the API call sequences. Thus, NEXZZER updates such relations
into the APIGraph accordingly. In future iterations, the fuzzing
strategies are constrained by the evolving relations encoded in
the APIGraph. This allows NEXZZER to produce more accurate
API calling sequences gradually.

Another contribution of NEXZZER is that it automatically
filters out false positive crashes caused by API misuse, ensur-
ing much more accurate results and practicability in automatic
library testing. We empirically summarize rules to determine
if a crash is caused by API misuse. Combined with the diverse
API sequences, it allows for efficient vulnerability detection.
Specifically, we identify two main types of API misuse: 1)
unintended API argument values (e.g., invalid argument values
specifying memory length), and 2) unintended API invocation
orders (e.g., consuming resources after improper deallocation).
For each type, we identify multiple rules associated with

API misuse based on expert experience. For each triggered
crash, NEXZZER automatically determines if it falls into these
categories (and thus is API misuse) based on learned relations
and applicable rules.

We conducted a comprehensive evaluation on NEXZZER to
evaluate its effectiveness in detecting API vulnerabilities. We
selected 18 representative libraries and the Google Fuzzer
Test Suite [10] as our evaluation benchmark, and com-
pared NEXZZER with three state-of-the-art automatic library
fuzzers including UTopia [29], FuzzGen [15], and Hopper
[20], and also manually-crafted drivers. In general, NEXZZER
achieved significantly higher code coverage (by up to 48.78%)
compared to other tools. Our ablation studies showed that
the components in NEXZZER contributed to both coverage
and vulnerability detection. We further compared the number
of API vulnerabilities detected by different fuzzers and the
efficiency of these fuzzers to automatically filter out API
misuse. To this end, for each reported crash, we manually
confirmed if it is misuse based on human expertise and
feedback from library developers. The results of NEXZZER are
promising: regarding new vulnerabilities, NEXZZER detected
27 new vulnerabilities in widely-used libraries like OpenSSL,
with 24 confirmed by developers and 9 fixed at the time of
writing; yet the sum of vulnerabilities detected by other tools
was 8. Regarding the efficiency of filtering out API misuse,
NEXZZER also performed better by automatically filtering out
93.96% API misuse crashes, compared to 28.65% in Hopper
and 47.11% in UTopia.

In summary, we make the following contributions:

• We design a modular driver architecture, facilitated by an
intermediate API description, to effectively scale library
fuzzing automation to large targets with thousands of APIs.
• We design a hybrid API relation learning strategy on top

of a dynamic structure APIGraph to model API usage and
behavior patterns. We also propose an effective rule-based
approach to automatically filter out API misuse.
• We implement the design in a prototype named NEXZZER.

It was evaluated on 18 libraries and found 27 previously
unknown vulnerabilities. The source code of NEXZZER is
available at https://figshare.com/s/9539927ac84ee6a7ac14.

II. BACKGROUND AND MOTIVATION

To automate library fuzzing, researchers proposed various
methods [16], [15], [22], [21], [29], [20]. In this section, we
illustrate the diverse API relations (§II-A), the differences
between API misuse and vulnerabilities (§II-B), and existing
works and limitations that motivate our work (§II-C).

A. API Relations

According to prior works [20], [29], the essential API usage
for effective API fuzzing can be categorized into two types of
relations: argument constraints within APIs (i.e., intra-API)
and dependencies between APIs (i.e., inter-API).

Intra-API Constraints. The first aspect of correctly in-
voking APIs is using expected arguments. Fuzzing drivers
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must follow the library’s design and randomize arguments
within constrained scopes to test the functionality without
triggering false alarms. There are several types of intra-
API constraints. First, arguments (e.g., LENGTH arguments)
constrained by other arguments within the same API should
not be randomly mutated by the fuzzer. Second, constants like
integers or strings denoting predefined behaviors do not require
mutation for testing. Third. there are some arguments that the
driver should constrain within proper ranges. For example, the
argument representing the size of allocated memory should be
properly mutated; otherwise, it could potentially exhaust CPU
or memory resources.

Inter-API Dependencies. We categorize interdependent
API relations into control dependency and data dependency.
Data dependency indicates the define-and-use data flow be-
tween arguments and return values. For example, it is common
for an API to use data returned from prior APIs as arguments.
Control dependency indicates the requirement of control-
flow order between certain APIs. For instance, in OpenSSL,
EVP MAC update is designed to be preceded by calling
EVP MAC init for initialization.

B. API Misuse

Based on the API relations described above, any invocation
violating these constraints would cause Undefined Behaviors
(UB). Although a UB may not always instantly crash the
execution, the unrecoverable mistakes in the library’s internal
states are highly likely to crash further API invocation. Similar
to most fuzzing methods [7], [5], we use execution crash
to signal a UB during the fuzzing. The causes of UB are
classified into two types in this work: API misuse, caused by
incorrect API usage contradicting the intended library usage;
and API vulnerability caused by mistakes made in the library
implementation and should be fixed. Library fuzzing aims to
avoid API misuse while identifying API vulnerabilities.

TABLE I: Comparsion of Different Automatic Library
Fuzzers.

Method Usage Learning Accuracy Diversity

FUDGE R Consumer
Utopia R Consumer (Unit Test)
Rubick R Consumer

APICraft M Execution Trace
FuzzGen M Consumer
Hopper M Dynamic Learning

NEXZZER M Consumer +
Dynamic Learning

R denotes methods that Replicate existing API sequence usage
M denotes methods that Modify API sequences

C. Existing Works and Limitations

Many works have been proposed for library fuzzing automa-
tion. In this subsection, we review existing works and discuss
their limitations.

1) Existing Works: We categorized existing works into two
types based on whether they choose to Replicate exact API
usage sequence from existing code or Modify API control
flow orders. Table I shows the metrics we used to evaluate
their performance, including accuracy and diversity. Accuracy
refers to the ability of fuzzers to generate valid API usage
instead of API misuse. Diversity refers to the ability of fuzzers
to produce diverse API sequences for testing the target library.
An ideal library fuzzer should produce diverse API sequences
that accurately reflect valid API usage, i.e., it achieves both
high accuracy and diversity.
Replicating Existing API Usage This line of research [16],
[22], [17], [29], [21], [26] shares the same characteristic of
preserving the original API invocation order and mutating only
the argument values to test the APIs. They generate test code
based on consumers, i.e., the existing code snippets invoking
the target APIs. For example, FUDGE [16] is one of the early
works to replicate API usage by program AST slicing. Some
following works [17], [21], [22] improve the static analysis for
retrieving more accurate API usage. More recently, UTOPIA
[29] steps further to inject random inputs to library unit tests,
which are found to have fewer noises than other consumers.

1 BIGNUM *a = BN_new();
2 BIGNUM *b = BN_new();
3 BN_bntest_rand(a, 512,
4 0, 0);
5 BN_set_bit(a, i);
6 BN_copy(b, a);
7 BN_free(a);
8 BN_free(b);

Listing 1: Consumer 1

1 BIGNUM *a = BN_new();
2 BIGNUM *b = BN_new();
3 ...
4 BN_hex2bn(&a, "FFF...");
5 BN_mod_exp_mont_consttime(
6 c, a, b, n, ctx, mont);
7 BN_free(a);
8 BN_free(b);

Listing 2: Consumer 2

The way of replicating the existing API usage reduces
the possibility of generating erroneous drivers. However, it
depends on the quality and coverage of the consumers,
which might not always be available or comprehensive.
Take OpenSSL as an example, the API BN set bit and
BN mod exp mont consttime only separately appear in two
unit tests (simplified in Listing 1 and Listing 2). By connecting
BN set bit with BN mod exp mont consttime together in a
call sequence, we detected a previously unknown integer
overflow vulnerability, which the developers later confirmed
and fixed. However, this line of research could not detect this
vulnerability because it separately tests the two APIs following
their unit tests. Our work detects 27 new vulnerabilities
because we are not limited to consumers like the unit tests.
We thus conclude that these works have high accuracy but
low diversity (the first three tools in Table I).
Mutating API Sequences To detect more vulnerabilities,
several works [15], [19], [20] are proposed to mutate not
only API arguments but also call sequences for covering
wider library functionalities. For example, APICRAFT [19]
profiles consumer execution traces and composes different API
sequences based on data dependencies. FuzzGen [15] performs
consumer coalescing that identifies common API calls between
consumers and randomly schedules their different subsequent
API calls. More recently, Hopper [20] proposes an interpreta-
tive driver to trigger diverse API call sequences with dynamic
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intra-API constraint learning.
Although these works show improved diversity by mutating

API call sequences, they face the accuracy challenge that
leads to higher misuse. For instance, APICraft only analyzes
execution traces of consumers and lacks crucial intra-API con-
straints (e.g., length parameters). FuzzGen analyzes consumer
source code but does not consider API control dependencies,
e.g., the allocation and deallocation API relations. These two
tools usually require fixing API misuse manually. To mitigate
misuse, Hopper learns some intra-API constraints (e.g., length
value range). However, it uses simple type-matching heuristics
between parameters and return types to build data depen-
dencies, which is not sufficient. For example, Hopper cannot
test APIs with field-sensitive [42] data dependencies between
arguments, which are crucial in some software like libavc,
libhevc, etc. Hopper also only considers simple inter-API
relations by observing coverage changes, which is inadequate
for legal sequence construction and API misuse identification.
As a result, as will be shown in our evaluation, Hopper still has
much misuse (71.35%) that requires extensive manual effort
to filter out.

2) Challenges and Motivation: Existing works either detect
fewer vulnerabilities by exactly replicating consumers or suffer
from API misuse due to arbitrarily mutating API sequences,
failing to achieve both high diversity and accuracy. We model
this challenge into two parts: C1: how to efficiently cover wide
input spaces of extensive APIs? C2: how to accurately test
APIs while avoiding API misuse crashes during fuzzing? In the
next section, we introduce the design of NEXZZER targeting
these challenges.

III. SYSTEM DESIGN

We present NEXZZER, a system that automatically tests
libraries with high accuracy and diversity. In this section, we
discuss the components of NEXZZER.

Fig. 1: Overview of NEXZZER.

A. Overview

The overview of NEXZZER is depicted in Figure 1. It first
performs static analysis on the target libraries and consumer
code to generate Liblang and a fuzzing interpreter. Liblang is
an intermediate description that encodes basic API information
like function signatures and argument types. NEXZZER parses
Liblang to generate API call sequences, i.e., Liblang seeds.
The fuzzing interpreter receives Liblang seeds as inputs to
invoke corresponding APIs. Together they form the basis

of our modular driver architecture (§III-B), addressing C1
mentioned in §II-C: the modular architecture decouples target-
agnostic tasks from traditional driver code into the general
interpreter, allowing for diverse API sequence scheduling and
dynamic adjustment of API usage.

Diverse input space coverage naturally brings the risk of
incorrect API usage and false positive crashes. To address this
(C2), NEXZZER proposes a dynamic graph structure called
APIGraph (§III-C) that encodes API relations. The APIGraph
is initialized based on the consumer graph or type matching,
depending on the availability of consumer code. Moreover,
to discover new API usage beyond the consumer graph,
NEXZZER dynamically evolves the APIGraph based on the
execution feedback of the API sequences during fuzzing.
The updated APIGraph, in turn, allows NEXZZER to adjust
mutation strategies to produce more accurate API sequences.
Finally, for API sequences leading to a crash, NEXZZER adopts
a comprehensive rule-based approach to infer if they are
caused by an API misuse or vulnerability (§III-D).

B. A Modular Driver Architecture

Our modular driver architecture consists of an intermediate
description, Liblang, and a general interpreter. This approach
differs from the one we call a monolithic structure, which
amplifies much of the misuse in existing works. In this
section, we first describe monolithic driver examples and their
limitations, then illustrate our driver architecture.

1) A monolithic driver: A monolithic driver intermingles
and completes several preparation tasks altogether, including
structured input partitioning, argument value constraining, data
dependency transferring, and call sequence scheduling, etc.
Listing 3 is the monolithic driver produced by FuzzGen
[15] to test OpenSSL by analyzing and coalescing the con-
sumers in Listing 1 and Listing 2. It has an entry function
LLVMFuzzerTestOneInput() that is invoked by the fuzzing engine
with a random byte-array data. The driver first prepares
argument dependencies (line 3). It then tests different API ar-
guments in corresponding types with content partitioned from
data (e.g., fuzzed_data.ConsumeString()). It further randomizes
API invocation orders for diversity (lines 6-28). To achieve
this, FuzzGen generates while-switch-case loops (function
pools), with each loop containing APIs selected from different
consumers. Due to space limits, we show two function pools
(lines 7-27) in the driver.

Automatically synthesizing the driver inevitably causes API
misuse due to various reasons, such as over-approximation of
static analysis. For example, the second argument value bits

of BN_bntest_rand() in line 11 may vary in different consumers
and thus be randomly mutated by the fuzzer, while it should
be restricted to a proper range by the driver for fuzzing effi-
ciency. Beyond argument usage, API sequence orders are also
commonly misused. For instance, when FuzzGen coalesces
consumers, it may inadvertently schedule the BN_free() API
(line 21) before other dependent APIs, which results in typical
Use-After-Free misuse.
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1 int LLVMFuzzerTestOneInput(uint8_t *data, size_t size) {
2 FuzzedDataProvider fuzzed_data(data, size);
3 BIGNUM* r1 = BN_new();
4 ...
5 BN_hex2bn(&r1, fuzzed_data.ConsumeString());
6 ...
7 while (fuzzed_data.remaining_bytes() != 0) {
8 switch(fuzzed_data.ConsumeIntegral(0, NUM_API)) {
9 case 0:

10 int bits = fuzzed_data.ConsumeIntegral(0, RANGE);
11 BN_bntest_rand(r1, bits, ...);
12 break;
13 case 1:
14 BN_mod_exp_mont_consttime(r1, ...);
15 break;
16 }
17 }
18 while (fuzzed_data.remaining_bytes() != 0) {
19 switch(fuzzed_data.ConsumeIntegral(0, NUM_API)) {
20 case 0:
21 BN_free(r1);
22 break;
23 case 1:
24 BN_set_bit(r1, fuzzed_data.ConsumeIntegral());
25 break;
26 }
27 }
28 ... // other function pools
29 }

Listing 3: A Monolithic Driver Example

This inherent challenge is exacerbated in monolithic drivers.
Because the preparation tasks are implemented using code and
are intermingled with API usage in a monolithic way, one
needs to carefully modify the driver code to avoid generating
misuse. This is still a labor-intensive process that needs target-
specific knowledge. For example, to avoid the misuse in
Listing 3, one needs to restrict the RANGE (line 10) to proper
values and constrain the invocation of BN_free() (line 21) to
not precede other dependent APIs. Given the complexity of
intra-/inter- API relations, no existing approaches attempt to
automatically adjust their generated driver code. This makes
the monolithic structure highly fragile, i.e., whenever misuse
occurs, the driver code might continuously produce API mis-
use crashes until manual post-processing fixes the misuse code.

2) Advantages of The Modular Driver: To address this
challenge, we propose a modular driver architecture. Rather
than completing all tasks within static driver code, the modular
architecture decouples target-agnostic tasks from generating
API call sequences. This enables NEXZZER to adjust genera-
tion strategies to avoid misuse dynamically.

Specifically, to produce and execute concrete API se-
quences, we implement an intermediate API description, Li-
blang, and a general interpreter. NEXZZER parses the API
header files (e.g., Listing 4) to obtain necessary information
(e.g., argument types) for generating Liblang Descriptions
(e.g., Listing 5). Our mutator (described in §III-D1) parses
Liblang Descriptions and generates/mutates Liblang seeds.
Each Liblang seed contains a concrete API call sequence (e.g.,
Listing 6). We implement an interpreter to receive a Liblang
seed as input and call different APIs based on the seed. To
adjust generation strategies, NEXZZER does not modify any
code. Instead, it constrains the mutator when mutating the

1 int DriverEntry(uint8_t *raw_api_seq) {
2 APISeq api_seq = Interpret_and_setup(api_seq);
3 for (int i = 0; i < api_seq.len(); i++) {
4 Transfer_dependencies(api_seq);
5 switch (api_seq.apis[i].idx) {
6 // -------- Synthesized code starts --------
7 case 0:
8 BN_set_bit(api_seq.apis[i].args[0], ...);
9 break;

10 case 1:
11 dep_1 = BN_new();
12 ...
13 // -------- Synthesized code ends ----------
14 }
15 }
16 Collect_feedback(api_seq);
17 }

Listing 7: NEXZZER’s Interpeter

Liblang seed. For instance, to avoid Use-After-Free misuse
in Listing 3, NEXZZER will not add BN_free() before its
dependent APIs in Liblang seeds.

Liblang. Liblang is an automatically generated declarative
description that abstracts essential API information. It is gener-
ated from function declarations and type definitions, consisting
of API names, parameter/return types, and necessary struc-
tures’ definitions. To automatically generate Liblang descrip-
tions, NEXZZER takes library header files that declare exposed
APIs, parses them into Abstract Syntax Trees (ASTs), and
scans all the API declaration nodes. NEXZZER distinguishes
exposed APIs from internal APIs using the function symbols’
visibility in compiled binaries. After obtaining the target API
set, it recursively scans all definitions of non-primitive types
used by API parameters/return values and transforms them
following the Liblang format.

Listing 4 and Listing 5 are examples of a library header
and its generated Liblang. The syntax of Liblang is inherited
from Syzlang [11] used for describing kernel system calls in
Syzkaller [14], since system calls have similar signatures to
library function calls. However, to suit the scenario of user-
space libraries, we improve the syntax with extra types and
utilities. The first one is the pointer resource type (ptrres in
Listing 5). In Syzlang, system calls cannot return dependent
pointers, while in Liblang, we extend the type system to
support API-returned or user-created pointers as a dependent
argument between library APIs. The second type is the support
for file operations that are common in user-space libraries.
Moreover, Liblang types are designed to be dynamically ad-
justable for API relation learning during fuzzing. For example,
the len[s] (i.e., the length of the first argument s) type in
line 10, Listing 5 is originally an int32 type and dynamically
updated to a len type during learning (§III-D3).

Interpreter. We depict the structure of our interpreter in
Listing 7. It calls different APIs based on the Liblang seed
(raw_api_seq in line 1). The interpreter first parses raw_api_seq

and completes the preparation tasks, such as setting up mem-
ory layouts (line 2) for non-primitive arguments and transfer-
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1 typedef struct bignum_st BIGNUM;
2 BIGNUM* BN_new();
3 int BN_set_bit(BIGNUM* a, int n);
4 int BN_add(BIGNUM* a,
5 BIGNUM* b,
6 BIGNUM* n
7 );
8 BIGNUM* BN_bin2bn(
9 const unsigned char* s,

10 int len,
11 BIGNUM* ret
12 );
13 ...

Listing 4: A Library Header Example

1 bignum_st { placeholder int32 }
2 BN_new() ptrres[out, bignum_st]
3 BN_set_bit(a ptrres[in, bignum_st],
4 n int32)
5 BN_add(a ptrres[in, bignum_st],
6 b ptrres[in, bignum_st]
7 n ptrres[in, bignum_st]
8 )
9 BN_bin2bn(s ptr[in, string],

10 len len[s],
11 ret ptrres[inout, bignum_st]
12 ) ptrres[out, bignum_st]
13 ...

Listing 5: A Liblang Description Example

1 resource0 = BN_new()
2 resource1 = BN_new()
3 resource2 = BN_bin2bn(
4 &(0x20000040="\x0c\x01\x03",
5 3, 0)
6 BN_add(resource0,
7 resource1,
8 resource2)
9 BN_add(resource0,

10 resource1,
11 resource2)
12 BN_set_bit(resource1,
13 0x7fffffff)

Listing 6: A Liblang Seed Example

ring dependent arguments across API invocations (line 4). To
test different libraries, the interpreter consists of synthesized
code (lines 5-11) that includes all the API entries. Given a
Liblang seed, the interpreter invokes corresponding APIs with
the provided arguments (e.g., api_seq.apis[i].args[0] in line
8) in the order specified by the seed (line 5). In this way,
the preparation tasks are decoupled from the target-specific
synthesized code.

Our interpreter also collects execution feedback at the end of
executing an API sequence (line 16), including return status,
code coverage, error information [8], etc. Such feedback is
used by NEXZZER to dynamically learn implicit API relation-
ships, as described below.

C. APIGraph

Different from some works that purely use static consumers
to replicate API call sequences, we construct APIGraph to
learn and express valid API usage dynamically. APIGraph
is initially constructed based on the consumer graph or type
matching, depending on the availability of consumer code. In
this section, we introduce its basic structure and initialization.
We will discuss the dynamic evolution of APIGraph in §III-D

1) APIGraph Structure: APIGraph is a directed graph,
consisting of nodes and edges as described below.

Node. A node corresponds to an API function, defined by the
API name and the types of its parameters. It has the following
attributes:

▷ Parameters, which encompass the parameter types and
attributes.

▷ Constraints, which are categorized into two kinds: Value-
Set constraints and Dependency constraints. Value-Set con-
straints refer to specific parameter attributes (i.e., CONSTANT,
RANGE, RANDOM, LENGTH, or FILEIO) with correspond-
ing values (e.g., constant or range of values). Dependency
constraints indicate the presence of APIGraph edges on this
node.

▷ SeedSpace, which stores key-value pairs where each key
is a de-duplicated libLang seed that crashes at this node, and
the value is corresponding API relations learned from the key.
It also stores extra information such as execution feedback that
serves for the de-duplication (§III-D3).

Edge. APIGraph edges are connected to parameters within
the nodes when data dependencies are involved, or connected
to a whole node for control flows. There are four edge types:
▷ Control-Flow Edge, which indicates control-flow edges

between APIs appeared in consumer graphs.
▷ Def-Use Edge, which represents an explicit data depen-

dency, where a target API node uses an argument defined by
the return value or argument of a source API node.
▷ Valid Edge, which represents an implicit data dependency

that the presence of the source API node is necessary for
executing the target API node. For example, in OpenSSL,
there is a Valid Edge from the API EVP MAC init to the API
EVP MAC update, because the latter API can not function
correctly without calling the former initialization API.
▷ Invalid Edge, which represents an implicit data depen-

dency that the presence of the source API node would lead to
unintended usage or undefined behavior of the target API node.
For example, in OpenSSL Big Number APIs, an Invalid Edge
exists between BN free to BN add, because calling the former
API before the latter one leads to Use-After-Free misuse.

Note that the Valid and Invalid Edges are implicit dependen-
cies and cannot be accurately determined by static analysis.
Instead, NEXZZER learns implicit dependencies during the
fuzzing process. APIGraph accordingly evolves with new
Valid/Invalid Edges to reflect discovered dependencies.

2) APIGraph Initialization: There are two ways to initiate
an APIGraph, depending on the availability of consumers (e.g.,
unit testing code).
Utilizing Consumer Graphs. If consumers are available,
we utilize consumer graphs to initiate APIGraph. NEXZZER
scans each existing function that consumes at least one API
call to generate a consumer graph, where nodes represent
API function calls and edges represent their control flows and
data flows in consumers. Similar to FuzzGen [15], NEXZZER
assigns different attributes to API arguments by performing
backward intra-procedural data-flow analysis on each API
argument: FILEIO is assigned to the arguments with data-flow
reaching file-related functions (e.g., fopen()) or the argument
having file name patterns (e.g., "filename"); LENGTH is
assigned to arguments with data-flow reaching related built-
in functions, e.g., API(s, strlen(s)). CONSTANT denotes
encountering constant values; DEPENDENT is assigned to
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Fig. 2: APIGraph and an example of a fuzzing iteration.

the arguments with data-flow that overlap with another API,
which forms Def-Use edges; and RANDOM is assigned to
the rest arguments. When encountering pointer and aggregate
argument types during data-flow analysis, we perform Ander-
son’s points-to analysis [43] and track pointer dereferences.
The analysis retrieves field-sensitive attributes for aggregate
types by continuously slicing the data-flow of subfields.

Similar to previous works [15], our static analysis has
certain limitations. For instance, it does not account for more
implicit aliases or correlated constraints, where one argument
value depends on another. Additionally, we cannot precisely
handle function pointers and follow previous practices [15],
[20] to manually adjust them if they are crucial. We consider
these inherent limitations of static analysis to be orthogonal
to this work and leave them as a future work.

Upon constructing consumer graphs, we merge consumer
graph nodes that share the same API names and parameter
types into one APIGraph node, conservatively retaining all
API attributes. Edges are also merged based on the source,
target, and edge type.
Type Matching. When there are no consumers, the APIGraph
is initialized by matching parameters and return types to build
Def-Use edges. The involved parameters are assigned with a
DEPENDENT attribute. We also assign the FILEIO attribute
to the arguments with file name patterns, and the RANDOM
attribute to all rest arguments. Note that type matching may
introduce over-approximated Def-Use edges. We discuss this
with an example in §V-D2.

D. API Fuzzing

This subsection describes NEXZZER’s fuzzing iterations. We
provide the pseudocode algorithm of a fuzzing iteration in
NEXZZER in Appendix §C3. At the high level, constrained
by APIGraph, the mutator generates Liblang seeds. After
executing the mutated seed, NEXZZER infers and updates the
intra-API and inter-API relations in APIGraph based on the ex-
ecution feedback. Based on the updated APIGraph, NEXZZER

adjusts mutation strategies (e.g., avoiding the deletion of out-
edge nodes of Valid Edges). For each triggered crash, based
on its learned relations and execution feedback, we use a rule-
based approach to infer if it is a vulnerability or misuse.

1) Generating Liblang Seeds: NEXZZER designs two ap-
proaches for Liblang seed generation and randomly chooses
one for each fuzzing iteration: one based on the consumer
graphs (if available) and the other based on APIGraph. Gener-
ating seeds from consumer graphs can reproduce high-quality
call sequences. To this end, NEXZZER starts from the root node
in a consumer graph and performs a depth-first-search along
the Control-Flow edges, generating multiple sequential paths
leading to any leaf node. Intuitively, each generated path is a
potential execution trace of the consumer.

On the other hand, seeds generated from APIGraph facilitate
a wider exploration of input spaces. To produce a Liblang seed
from APIGraph, NEXZZER randomly selects a self-contained
node (i.e., not a target of any Def-Use or Valid Edge) from
APIGraph and then undergoes multiple rounds of node inser-
tions (described in §III-D2). This allows NEXZZER to produce
inputs expressing diverse API usages beyond consumers.

2) Seed Mutation: In this step, NEXZZER randomly triggers
either the type-aware argument mutation or sequence-aware
mutation on Liblang seeds.

▷ Type-Aware Argument Mutation targets independent
arguments and applies different strategies tailored to their
Liblang types and attributes: for arguments with LENGTH
attribute, NEXZZER obtains the desired length values based
on the corresponding pointer argument; to identify which
pointer the LENGTH argument pertains to, NEXZZER mu-
tates LENGTH argument to cause overflow and examine the
access violation address [8]; for FILEIO, NEXZZER creates
temporary files with mutable content; for arguments with
value range constraints or CONSTANT attributes, NEXZZER
performs constrained mutation within ranges; for arguments
with pointer or structure types, NEXZZER recursively iterates
into their pointee or member types for mutation when the field-
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sensitive attributes are available (§III-C2); for arguments with
RANDOM or without attribute, NEXZZER randomly mutates
their values.

▷ Sequence-Aware Mutation targets DEPENDENT argu-
ments between APIs. It involves randomly mixed rounds of
two basic operations: node insertion and node deletion.

During node insertion, the mutator selects a random position
within the Liblang seed and calculates potential candidate
APIs that can be inserted. The algorithm is provided in the
Appendix algorithm 1. Specifically, the insertion should not
introduce Invalid Edges and should maintain all known Def-
Use and Valid Edges for existing arguments and nodes.

Node deletion is an operation used not only for mutating
seeds but also for relation learning in §III-D3. Given a Liblang
seed and a candidate node to be deleted, the mutator searches
for the candidate’s Def-Use and Valid out-edges, identifying
nodes that depend on the candidate node. The mutator would
either remove the candidate and its dependency nodes, or
retain the candidate node and search for another candidate.

3) API Relation Learning: NEXZZER discovers new API
relations based on the feedback of executing Liblang seeds.
It accordingly updates the APIGraph by adding new edges or
updating API parameter attributes.

Selecting Seeds for Relation Learning. Not all mutated
Liblang seeds are valuable for API relation learning. NEXZZER
only analyzes the de-duplicated seeds whose executions lead
to new crashes or new code coverage. NEXZZER deduplicates
crashing seeds based on whether they have unique call stack
frames of library’s source code path (excluding unrelated
paths like the interpreter/Glibc). While this approach may treat
crashes with different call stacks as unique even if they are
duplicates, we adopt this approach to avoid missing crashing
seeds that indicate critical API usage during relation learning.
We leave better deduplication as a future work. NEXZZER
then performs the following learning phase to infer usage
constraints.

Learning Relations Across APIs. NEXZZER infers new
relations across different APIs (i.e., nodes in APIGraph). It
accomplishes this by examining whether executing an API can
change the status of executing the API sequences. Specifically,
for a crashing node Nt, if removing the node Ns (which has
no known edge from/to Nt in APIGraph) changes crashing
executions to non-crashing at Nt, it indicates that Ns and Nt

have implicit dependencies that are not currently represented in
APIGraph. In such cases, new Invalid Edges will be added to
reflect these dependencies. On the contrary, for a non-crashing
Nt, if removing Ns changes the execution to crashing, a new
Valid Edge will be added.

We use the example in Figure 2 to illustrate this process.
In a fuzzing iteration, a seed randomly selected from the
corpus has the sequence: API1 → API2 → API3 → API4.
During seed mutation (§III-D2), NEXZZER inserts API5 into
this sequence and executes the new seed. Assuming the
execution leads to a new crash of API4, NEXZZER creates
a new SeedSpace in the API4 node and starts to analyze this

sequence. It starts from the last node before API4 and tries
to remove each node from back to forth. It focuses on API3
and API5 because these two nodes have no relation with
the crashing node API4 according to the current APIGraph.
If removing API3 causes the execution to crash with the
same feedback, NEXZZER removes API3 to minimize the
seed. If removing API5 causes the execution to non-crashing,
NEXZZER adds a new Invalid Edge from API5 to API4. In
the following Liblang seed mutations, NEXZZER will not add
API5 before API4 to avoid repetitive crashes. Algorithm 2
in the Appendix shows more details, including the rationale
of the back to forth iteration.
Learning Value-Set Constraints of API Arguments. In
addition to implicit API relations, NEXZZER also learn Value-
Set constraints of API arguments and store them in the
SeedSpace. Specifically, when encountering crashing APIs,
NEXZZER tentatively adjusts argument values based on the
execution feedback. For arguments that have “mutable” types
(e.g., integer types, pointers to primitive types, etc.) or at-
tributes labeled with RANDOM and without DEPENDENT,
NEXZZER tentatively changes the argument values using the
following strategies: 1) For integers, NEXZZER performs bi-
nary searching of the value. 2) For other types of arguments,
NEXZZER borrows values from prior non-crashing API se-
quences and consumers. By observing the execution results
of APIs with mutated arguments, NEXZZER records a range
of argument values that change the crashing status. This allows
NEXZZER to avoid repeatedly triggering similar crashes due to
incorrect usage.

4) Distinguishing API Misuse from Vulnerabilities: For
each crashing seed, NEXZZER uses its learned relations (e.g.,
Value-Set constraints) to identify if it is misuse. Specifically,
we apply any applicable rules as summarized below to identify
and filter out misuse. Our filtering rules only target crashing
API misuse. Although NEXZZER might produce non-crashing
misuse seeds, they will not have much impact as NEXZZER is
coverage-guided. We also do not perform filtering for crashes
caused by tentatively mutating seed during relation learning.
These derived crashes are used as a reference to infer the
original seed’s API usage.

We summarize two types of misuse and their filtering rules:
misuse caused by unintended 1) API argument values or 2)
API invocation orders. For the first type, we consider the
following cases. 1 Length: A crash at the API is caused
by a memory overflow, but it can be resolved by properly
calculating an argument value indicating correct memory size
(as described in §III-D2). 2 Range: A crash is caused by
CPU/memory exhaustion (indicated by execution time-out or
out-of-memory error), but it can be resolved using a restricted
argument value, such as the size argument for a memory
allocation API. 3 Non-null: A crash caused by a pointer
dereference of an invalid value (e.g., NULL). This occurs when
NEXZZER provides an invalid value to a pointer argument and
observes an illegal dereference of the value.

The other type of API misuse is caused by unintended API
call sequences. This includes the following cases. 1 Miss-

8



DU: A crash occurs in an API sequence that contains API N ,
but the sequence does not include APIs that connect to N via a
Def-Use Edge. 2 Invalid Usage: A memory error (e.g., UAF)
occurs but the API sequence contains nodes connected by an
Invalid Edge. Meanwhile, Ns contains memory deallocation
according to the crashing call stack, i.e., a user-created UAF
misuse.

After applying these rules, crashes that are still unidentified
would be assigned the unknown type as suspicious vulnerabil-
ities for manual filtering. In our evaluation, through manually
analyzing the crashes to obtain ground truth, we find that our
rule-based filtering approach is effective, i.e., it automatically
filters out most (93.96% of) API misuse while retaining all true
vulnerabilities. We also provide more examples and discuss the
rationale of this approach in Appendix §B.

IV. SYSTEM IMPLEMENTATION

We implemented the modular driver architecture with 1K
lines of Python and 2K lines of C++ code based on the LLVM
project [39], [41]. The fuzzing engine and dynamic learning
strategies are implemented with 12K lines of Rust atop the
LibAFL [23] framework, with a Liblang parser extended from
Healer [38] with additional types (§III-B2). We discuss some
implementation details in this section:
C/C++ Support. Similar to Hopper [20], our implemen-
tation supports testing C APIs, including C++ libraries that
implement C-style APIs. However, unlike Hopper, which calls
C APIs through Rust FFI in the fuzzing engine, NEXZZER
synthesizes a standalone interpreter with API call entries in
C (e.g., lines 5-11 in Listing 7). This modular design is more
easily extendable to other languages, such as C++ or other
targets with callable interfaces. This is because Rust FFI is
inherently challenging to use with interfaces other than C,
even for C++ [9]. To extend NEXZZER’s driver to support
C++ APIs, it requires further engineering work to support
class object transferring, class method invocations, and other
common C++ grammars, which we leave as future work.
APIGraph Partitioning. A large library and its APIGraph
usually consist of multiple independent groups of nodes (i.e.,
some APIs are completely unrelated), which suggests separate
testing to maintain efficiency. To this end, we apply classical
graph partitioning algorithms to reduce the graph size. We first
divide the graph into Weakly Connected Components (WCCs)
[46] by performing breadth-first-search through its edges. As
the initial APIGraph connects APIs through Control-Flow and
Def-Use edges, a WCC ideally represents a group of APIs
with related usage. If a WCC remains large, we further apply
the Louvain community detection algorithm [37] to partition
it into smaller groups of more closely related APIs. The
algorithm takes a WCC as input, and we treat all edges in the
WCC as equally weighted. After experimenting with several
thresholds, we found that 1,000 is suitable to balance the
size and the number of partitioned graphs. In our evaluation,
we partition the APIgraph when it has over 1,000 nodes. We
acknowledge that there may be relationships between APIs in

different groups. We defer the precise categorization of APIs
for large libraries to future work.

V. EVALUATION

In this section, we comprehensively evaluate NEXZZER to
answer the following research questions.

• RQ1: How effective is NEXZZER in testing library APIs
compared to prior works?
• RQ2: Can NEXZZER effectively filter out API misuse?
• RQ3: Is NEXZZER practical and how much human effort

is needed to validate its results?

A. Setup

We first describe our experimental setup, including the
fuzzers we are comparing to, the target libraries, and the
experimental settings.
Fuzzers. We compare NEXZZER with three state-of-the-art
automatic library fuzzers named FuzzGen [15], Hopper [20],
and UTopia [29]. We also compare with manually written
drivers [1]. We cannot compare with automatic fuzzers such as
FUDGE [16], Intelligen [17], and DAISY [21] as they have
not open-sourced their implementations. Additionally, some
works target different platforms, such as RUBICK [22] for
Java libraries, APICRAFT [19] for macOS, and WINNIE [26]
for Windows, and thus cannot be used for our evaluation.
GraphFuzz [18] also targets API sequence testing, while it
is not automated and requires manually-written schemas.
Evaluation Datasets. We selected two datasets for our
evaluation. The first dataset includes 18 software libraries in
their latest version. Our selection criteria include: 1) libraries
that are evaluated in related works like UTopia [29] and
Hopper [20]; 2) libraries that are widely used and heavily
tested, such as OpenSSL and libxml2; The second dataset is
the Google Fuzzer Test Suite (FTS) [10]. We test different
fuzzers on this benchmark to evaluate their effectiveness in
detecting known vulnerabilities.
Experiment Setting. We conducted all experiments using
the same hardware configuration: a server with 64GB DRAM
and 128 AMD EPYC 7702P processor cores at 3.3GHz. Each
fuzzing driver was run for five rounds, with each round lasting
24 hours on a single CPU core. Following other works [15],
[29], we excluded static analysis (which took less than 20
minutes on average) from the 24-hour time budget.

To compute library code coverage, we used SanitizerCover-
age [40] in LLVM and averaged the results of the five rounds.
NEXZZER’s interpreter records code coverage of non-crashing
executions. When a fuzzer has multiple drivers for a single
library, we aggregated their coverage to calculate the overall
code coverage of the library for that fuzzer. We used an empty
initial corpus for all the experiments.

B. Effectiveness of NEXZZER (RQ1)

In this section, we evaluate NEXZZER and compare it with
other tools.
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TABLE II: Number of covered APIs (#UAPI), code coverage and standard deviation, and number of detected unique
vulnerabilities (#UVul) of different fuzzers.

Fuzzers OpenSSL tesseract jsonnet leveldb uriparser libvpx libaom libTom libGMP relic libxml2 libpcre2 lcms cJSON libopux libgsm libavc libhevc

#UAPI

BASELINE 606 9 5 15 17 17 13 33 59 54 59 14 10 6 4 5 1 1
FUZZGEN N/A N/A N/A N/A N/A 5 7 N/A N/A N/A N/A N/A N/A N/A 12 7 1 1
UTOPIA N/A 356 6 91 24 43 109 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
HOPPER 3834 138 46 68 90 24 35 93 594 270 114 27 274 78 54 36 1 1
NEXZZER 3834 138 46 68 90 24 35 93 594 270 114 27 274 78 54 36 1 1

Code
Coverage

BASELINE 13215(4%) 17013(9%) 1408(6%) 2247(8%) 7351(4%) 2592(5%) 8329(8%) 776(4%) 2817(6%) 2388(3%) 9541(8%) 7737(4%) 2222(3%) 621(1%) 1332(2%) 213(1%) 4525(4%) 5658(4%)
FUZZGEN N/A N/A N/A N/A N/A 1378(5%) 6028(6%) N/A N/A N/A N/A N/A N/A N/A 1033(1%) 209(3%) 4119(3%) 3574(3%)
UTOPIA N/A 3951(2%) 1825(4%) 2668(3%) 7465(2%) 1728(6%) 7047(4%) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
HOPPER 17989(15%) 19400(10%) 2037(11%) 1000(10%) 7312(5%) 1461(8%) 7202(9%) 1142(4%) 5872(4%) 3490(6%) 5718(10%) 6544(10%) 1701(2%) 863(2%) 4418(6%) 312(0%) 33(0%) 21(0%)
NEXZZER 26984(9%) 20315(12%) 3434(5%) 1877(9%) 7835(4%) 2467(13%) 7381(13%) 1326(6%) 6450(4%) 4192(5%) 14195(9%) 6825(7%) 3306(3%) 865(2%) 4021(4%) 324(0%) 4202(5%) 4733(4%)

#UVul

BASELINE 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0
FUZZGEN N/A N/A N/A N/A N/A 0 0 N/A N/A N/A N/A N/A N/A N/A 0 0 0 0
UTOPIA N/A 1 0 0 0 0 0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
HOPPER 2 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0
NEXZZER 18 1 0 0 0 0 0 1 1 2 1 1 1 0 1 0 0 0

1) Evaluation Results of Libraries: Table II shows the
testing results on the latest versions of 18 libraries. We found
that FuzzGen and UTopia were unable to test certain libraries
(marked as N/A in Table II). The reason for UTopia is that
it requires unit tests written in particular unit test frameworks
such as gtest [6] or boost [3] to test library APIs. However,
not all libraries are integrated with such frameworks. For
FuzzGen, its limited practicability, including missing header
inclusions, incorrect type casts, incorrect dereferences, etc.,
has been discussed by prior works [29]. Despite our efforts to
fix some implementation issues, we still found it difficult to
address them all. Therefore, we did not compare with FuzzGen
for certain libraries where it is not applicable.
API Coverage. We count the number of unique APIs in
different fuzzers’ drivers. We found that NEXZZER and Hopper
achieved higher API coverage in most libraries compared to
other fuzzers. This is because NEXZZER and Hopper extract
the target APIs directly from library header files, whereas
UTopia and FuzzGen can only test APIs that appear in
consumer code. UTopia achieved higher API coverage than
NEXZZER in four C++ libraries because UTopia tests C++
APIs while NEXZZER only tests their partial C wrappers.
Code Coverage. NEXZZER achieved the best code coverage in
11 out of 18 cases. We provide an ablation study on NEXZZER
regarding code coverage in §V-B3. The manually written
drivers delivered a better performance for some small sets of
target APIs (e.g., libpcre2). This is because manually written
drivers can carefully craft an API sequence that sufficiently
covers the major input spaces of the library, whereas NEXZZER
allocates additional resources to sequence mutation. Hopper, in
general, lacks more precise API usage learning to reach deeper
coverage. Notably, it shows exceptionally shallow coverage in
libavc and libhevc due to missing crucial field-sensitive data
dependencies between the structure members of arguments.
UTopia delivered better results when the C++ APIs and unit
tests were comprehensive (e.g., leveldb).
Vulnerability Detection. We further compare the number
of API vulnerabilities detected by different fuzzers. To this
end, we manually analyzed all triggered crashes (excluding
API misuse crashes indicated by fuzzers) to determine if they
were real vulnerabilities and responsibly reported them to
developers for confirmation.

From the results, NEXZZER detected significantly more

vulnerabilities than other tools in the latest versions of li-
braries: it detected 27 new vulnerabilities (listed in Table V
in Appendix), whereas the sum of vulnerabilities detected by
other tools was eight. Most (24/27) vulnerabilities have been
confirmed by the library developers, and nine were fixed at the
time of writing. Eight confirmed vulnerabilities in OpenSSL
have not been fixed because they involved deprecated APIs.

We investigated the reasons that NEXZZER detected more
vulnerabilities than other tools. Compared with the baseline
and UTopia [29], NEXZZER produced diverse API call se-
quences without being limited to the usage patterns in unit
tests. Compared to Hopper [20], NEXZZER avoided producing
erroneous sequences by learning implicit dependencies. This
allowed it to assign more energy to test API sequences reflect-
ing correct usages. In Appendix §A, we showcase two new
vulnerabilities uniquely detected by NEXZZER in OpenSSL
and PCRE2, both of which have been fixed by the developers.

2) Evaluation Results of Benchmark: We also evaluated
known vulnerability detection because prior works evaluated
these old versions of libraries. To this end, we tested the
Google Fuzzer Test Suite (FTS) [10] to evaluate NEXZZER
and other fuzzers. The reasons for not including all libraries
in FTS include: (1) some are C++ libraries without C APIs; (2)
some libraries are used to assess coverage without showcasing
known vulnerabilities; We compared NEXZZER with Hopper
[20] and the provided manual drivers. We did not include
UTopia [29] because there is little overlap of targets that
UTopia can run to compare with NEXZZER due to UTopia’s
reliance on particular unit test frameworks.

Table VI in the Appendix shows the number of uncovered
known vulnerabilities of different libraries and Figure 4 shows
the Venn diagram of the vulnerabilities. NEXZZER detected
more vulnerabilities than other approaches in the FTS dataset.
The reason that NEXZZER did not detect four vulnerabilities
detected by manually crafted drivers was that these vulnera-
bilities did not lead to execution crashes (e.g., logical errors
requiring extra assertions manually written in the drivers),
which could be one of the future direction of NEXZZER.

3) Ablation Study: To evaluate the effectiveness of individ-
ual components in NEXZZER, we conducted an ablation study
to evaluate: 1): the contribution of static consumer analysis;
2): the contribution of dynamically learned relations. Other
key components, such as the modular driver architecture, are
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TABLE III: Consumer Analysis Results and Ablation Study

Targets
Consumer Results and Ablation Relation Ablation

Consumer Coverage
∆Bug Coverage FP Ratio

∆Bug
#F #N #E* #E w/o C NEXZZER ∆Cov w/o R NEXZZER ∆Cov w/o R NEXZZER ∆FP

OpenSSL P1 296 568 16607 20852 9408 10904 +15.90% 2 7784 10904 +28.61% 0.2583 0.0377 -85.40% 1
P2 547 951 11773 17346 11967 12358 +3.27% 0 9267 12358 +25.01% 0.1965 0.0289 -85.29% 0
P3 255 634 2917 7642 12506 15076 +20.55% 0 9796 15076 +35.02% 0.1884 0.0254 -86.51% 0
P4 262 625 4341 6638 10357 13983 +35.01% 0 9575 13983 +31.52% 0.1188 0.0309 -73.98% 1
P5 117 423 3390 4892 9652 10352 +7.25% 0 9414 10352 +9.06% 0.1985 0.0122 -93.85% 0
P6 24 254 794 1603 4987 5869 +17.69% 1 5397 5869 +8.04% 0.0416 0.0085 -79.56% 1
P7 200 539 1439 3078 9011 9149 +1.53% 0 8537 9149 +6.68% 0.1188 0.0208 -82.49% 0

libpcre2 40 78 165 834 6511 6825 +4.82% 1 6171 7266 +15.07% 0.0512 0.0069 -86.52% 1
tesseract† N/A N/A N/A N/A N/A N/A N/A N/A 16925 20315 +20.03% 0.2018 0.0679 -66.35% 2

jsonnet 6 48 106 141 3091 3434 +11.10% 1 2410 3434 +42.49% 0.1313 0.0127 -90.33% 0
leveldb 87 92 8 204 1810 1877 +3.70% 0 1612 1877 +16.44% 0.0152 0.0075 -50.66% 0

uriparser 3 70 71 179 7313 7835 +7.14% 0 6637 7835 +18.05% 0.1341 0.0881 -34.30% 0
libxml2 21 1182 16255 22972 13489 14195 +5.23% 1 10072 14195 +28.86% 0.1246 0.0079 -93.65% 0
cJSON 19 79 2459 2763 865 865 0.00% 0 686 865 +20.69% 0.1837 0.0237 -87.09% 0

lcms 4 287 3382 4120 3011 3306 +9.80% 2 2649 3306 +19.87% 0.1138 0.0187 -83.56% 2
libTom 19 180 3872 5640 1298 1374 +5.86% 0 948 1374 +31.00% 0.1045 0.0722 -30.90% 1
Relic 59 361 420 2538 3877 4192 +8.12% 0 3296 4192 +22.08% 0.2795 0.0348 -87.54% 0

libGMP 87 594 1339 7495 6019 6450 +7.16% 0 3201 6450 +50.37% 0.2205 0.0568 -74.24% 0
libopus 4 67 49 245 2965 3276 +10.49% 0 2197 3276 +32.93% 0.2249 0.0933 -58.51% 0
libvpx 4 37 108 218 2290 2467 +7.73% 0 1940 2467 +19.40% 0.0001 0.0001 0.00% 0
libaom 4 35 113 201 6889 7381 +7.14% 0 5642 7381 +23.56% 0.0001 0.0001 0.00% 0
libgsm 4 35 16 35 318 324 +2.99% 0 292 301 +2.99% 0.0001 0.0001 0.00% 0
libavc 2 53 0 280 33 4202 +12633% 0 3438 4202 +18.18% 0.0001 0.0001 0.00% 0

libhevc 2 29 0 135 46 4733 +10189% 0 4371 4733 +7.64% 0.0001 0.0001 0.00% 0

#F: the number of consumer files; #N: the number of (possibly duplicated) API call nodes in consumers; #E*: the number of Def-Use Edges by type-
matching; #E: the number of all edges after consumer analysis;
w/o C: running NEXZZER without the results from consumer analysis (i.e., only use type-matching edges); w/o R: running NEXZZER without the relation
learning to constrain the mutator;
†: We did not find consumers using the C APIs of tesseract in its repository.

essential for running the fuzzer and cannot be ablated. The
resulting differences in code coverage and the number of
uncovered vulnerabilities are reported as ∆Cov and ∆Bug,
respectively, in the Consumer Results and Ablation and
Relation Ablation columns in Table III.

Consumer Analysis We ran NEXZZER on libraries with and
without API usage from consumer analysis. In the latter case
(w/o C), we did not assign attributes (from static analysis) to
APIGraph nodes or generate seeds from consumer graphs.

When enabling consumer analysis, NEXZZER demonstrated
about 10% improvements in code coverage across most targets,
except for two targets (libavc and libhevc), which showed
significant gains (about 12000%) with consumer analysis.
The exception is because static analysis provides crucial API
usage patterns that are only apparent in consumer code,
which involve type casting and argument dependencies within
structures. In terms of uncovered vulnerabilities, NEXZZER
identified 8 more vulnerabilities when enabling consumer
analysis. Overall, the results indicate that NEXZZER performs
well without consumer data in most cases, but in certain
libraries, consumer analysis is necessary.

Relation Learning We disabled the relation learning com-
ponent in NEXZZER and retain the same APIGraph to inves-
tigate the benefits of relation learning. We find that relation
learning consistently improved coverage across all cases, with
gains ranging from 2.99% to 50.37%. In terms of uncovered
vulnerabilities, NEXZZER detected 9 more vulnerabilities due
to relation learning. The coverage and vulnerability number
improvements can be attributed to fewer API misuse crashes

in NEXZZER, as shown in ∆FP column under FP Ratio in
the Relation Ablation section. We discuss and provide insight
into how relation learning helps avoid API misuse in §V-C3.

C. Filtering out API Misuse (RQ2)

This subsection discusses the correctness and effectiveness
of our relation learning and rule-based approach.

1) Correctness: NEXZZER triggered 7,291 crashes in Ta-
ble IV, among which it automatically filtered out 6,851 and
left 440 crashes as suspicious vulnerabilities. Through manual
analysis of these 440 crashes, we confirmed 27 vulnerabilities.
One might wonder if there were vulnerabilities among the
6,851 crashes automatically filtered out by NEXZZER. To
evaluate this, we further manually analyzed all the 6,851
crashes. We explain how we analyze crashes and the time
taken for the analysis in §V-D. We confirmed that all 6851
API misuse identified by NEXZZER were true cases of API
misuse, indicating that NEXZZER could filter out API misuse
with high correctness.

2) Effectiveness: In this part, we evaluate the effectiveness
of different fuzzers in filtering out API misuse. While all tools
in our evaluation could filter out certain API misuse, they all
have false positives in identifying API misuse crashes. We
thus study the crashes not tagged as API misuse by fuzzers
to evaluate if they were unrecognized API misuse. We list the
results in Table IV. In OpenSSL, due to its large-scale of APIs,
we partitioned it into seven APIGraphs to fuzz separately as
described in §IV. The partitioning is deterministic across the
five rounds of fuzzing.
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TABLE IV: Filtering out API Misuse and Relation Learning Effectiveness

Targets
NEXZZER HOPPER UTopia

ValueSet APIEdge Unknown Crash Total #Inf #FP #TP
(BUG) Total #FP

(Driver)
#TP

(Driver) #Bug

Total #L #N #R Total #Mis-DU #I Total #FP #TP
(BUG)

OpenSSL

P1 236 8 219 9 217 209 8 30 28 2 806 110 696 0 N/A N/A N/A N/A
P2 255 11 223 21 286 268 18 31 30 1 828 335 493 0 N/A N/A N/A N/A
P3 236 8 218 10 313 303 10 36 35 1 134 31 103 0 N/A N/A N/A N/A
P4 203 2 196 5 237 225 12 26 23 3 230 60 170 0 N/A N/A N/A N/A
P5 210 12 195 3 227 203 24 29 28 1 40 24 16 0 N/A N/A N/A N/A
P6 84 0 75 9 95 72 23 14 13 1 70 38 32 0 N/A N/A N/A N/A
P7 233 35 182 16 198 169 29 44 42 9 300 81 217 2 N/A N/A N/A N/A

tesseract 95 6 89 0 47 37 10 29 27 1 86 9 76 1 246 111 135 0
jsonnet 29 0 29 0 16 7 9 4 3 0 22 4 18 0 15 0 15 0
leveldb 53 10 41 2 57 48 9 8 8 0 36 23 13 0 157 71 86 0

uriparser 8 3 3 2 60 49 11 7 7 0 93 46 47 0 80 61 19 0
libvpx 48 0 43 5 59 54 5 2 2 0 9 2 7 0 17 14 3 0
libaom 90 5 69 16 30 25 5 15 15 0 10 4 6 0 109 37 72 0
cJSON 73 16 57 0 39 39 0 7 6 0 11 9 1 1 N/A N/A N/A N/A

lcms 206 8 198 0 261 260 1 12 9 1 106 2 103 1 N/A N/A N/A N/A
libTom 271 14 176 81 345 320 25 13 12 1 194 106 88 0 N/A N/A N/A N/A
Relic 260 33 161 66 443 396 47 43 41 2 2 2 0 0 N/A N/A N/A N/A

libGMP 397 117 227 53 320 309 11 41 40 1 737 227 510 0 N/A N/A N/A N/A
libopus 74 5 62 7 38 36 2 11 10 1 125 21 103 1 N/A N/A N/A N/A
libpcre2 101 8 92 1 77 71 6 6 4 1 213 30 182 1 N/A N/A N/A N/A
libxml2 95 14 78 3 169 161 8 31 30 1 11 0 11 0 N/A N/A N/A N/A
libgsm 5 0 4 1 8 8 0 0 0 0 0 0 0 0 N/A N/A N/A N/A
libavc 5 0 1 4 5 0 5 1 0 0 0 0 0 0 N/A N/A N/A N/A

libhevc 5 0 1 4 4 0 4 0 0 0 0 0 0 0 N/A N/A N/A N/A
Total 3272 315 2639 318 3551 3269 282 440 413 27 4063 1164 2892 7 624 294 330 0

NEXZZER: #L: API misuse identified by Length rule; #N: API misuse identified by Non-null rule; #R: API misuse identified by Range rule; #Mis-DU:
API misuse identified by ”Missing Def-Use Edges” rule; #I: API misuse identified by ”Invalid Edge” rule; #FP: suspicious vulnerabilities confirmed as
API misuse after manual analysis; #TP: true positives, i.e., unique vulnerabilities after manual analysis;
Hopper: #Inf: automatically inferred API misuse cases;
UTopia: #FP: the number of unusable drivers containing API misuse code; #TP: correct drivers without API misuse;

Fig. 3: API Misuse Ratio Trends (w/o R: NEXZZER* (without the relation learning to constrain the mutator); w/ R: NEXZZER)

Effectiveness of NEXZZER. We first discuss the overall
effectiveness of NEXZZER to filter out API misuse. The
results suggest that all rules (listed in ValueSet and APIEdge
columns in Table IV) in §III-D4 can identify API misuse.
However, some rules (e.g., Mis-DU) are more effective.
Comparison with Other Tools. We further compare
NEXZZER with other tools regarding the number of crashes
requiring human triage. Hopper identified a portion of (28.65%
of) crashes as misuse. It still leaves 2,899 (71.35% of) crashes,
of which only 7 were confirmed as vulnerabilities. This
is because Hopper simply conducts type matching without
considering certain implicit inter-API relations. For example,
Hopper is not aware of the control dependencies for APIs such
as gmpz init in libgmp and EVP MAC init in OpenSSL, which
should precede other APIs, resulting in extra API misuse
crashes in these libraries.

We also compare NEXZZER with UTopia on the six libraries
where UTopia is applicable. The methodology of UTopia to
reduce API misuse is by exactly replicating unit test call
sequences into multiple standalone drivers with only argu-

ment mutation. Therefore, in Table IV, we evaluate UTopia’s
true/false positives by manually analyzing how many drivers
contain no API misuse and thus can effectively test the APIs.
As shown by the results, a large portion of drivers (47.11%)
produced by UTopia yield API misuse crashes because it in-
correctly mutated certain API arguments. For example, UTopia
falsely mutates an argument representing a file name or a
length of buffers because it cannot identify the corresponding
argument attributes in static analysis.

3) Implications of Misuse on Input Mutation: NEXZZER not
only automatically identifies API misuse but also gradually
generates fewer inputs that lead to API misuse. This is because
APIGraph evolves with learned relations that constrain the
mutation to avoid producing API misuse. To examine the ef-
fectiveness of relation learning in constraining API mutations,
we measure the proportion of crashing inputs representing
misuse among all fuzzing inputs (i.e., FP ratios) and their
changing trends. We compare NEXZZER with NEXZZER*,
an implementation that uses invariant mutation strategies
throughout the fuzzing process. Due to page limits, we list
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partial results in Figure 3 and show all results in Figure 5
in the Appendix. In summary, the API misuse cases across
different fuzzing iterations remain stable in NEXZZER*, yet
there is a decrease of API misuse cases in NEXZZER as the
fuzzing iterations progress. This demonstrates that NEXZZER is
dynamically constraining mutations for producing valid inputs.

D. Unknown Misuse in NEXZZER and Practicability (RQ3)

In this subsection, we explain how we obtain the ground
truth of whether a crash is misuse. We also discuss the
unfiltered crashes leading to API misuse in NEXZZER and the
human effort needed to validate them.

1) Methodology: To manually differentiate API misuse
from vulnerabilities, we utilize a variety of comprehensive
resources, such as documentation, library source code, con-
sumer source code, public issues, and relevant discussions.
Among these, we prioritize the official documentation and
code comments. If these sources clearly state that specific
constraints must be adhered to by API consumers, any crashes
resulting from violations of such constraints are classified
as API misuse, regardless of whether the constraints are
contentious. This includes scenarios where the code invoking
APIs should check for NULL pointer arguments prior to use.

We also encounter a lack of adequate official resources
[45], [44]. To supplement our analysis, we examine existing
consumer practices to determine if certain constraints are
widely adopted. We also seek existing issues and discussions
when encountering suspicious cases. For instance, in LCMS,
NEXZZER identified a crash that initially appeared controver-
sial; however, we discovered that the developer had previously
addressed a similar issue in another API exhibiting analogous
code patterns. These insights are useful for distinguishing true
bugs that warrant fixing. Although this manual analysis can be
labor-intensive, we have observed that, during fuzzing, most
cases show recurring patterns (e.g., Mis-DU), and the number
of contentious cases is relatively small.

In total, we spent approximately 90 hours analyzing all
triggered crashes. Compared to Hopper, the effort required to
analyze one unknown crash is similar, including debugging
the API source code and examining the library documen-
tation. The relation learning of NEXZZER further facilitates
this process by providing hints to users about the crashing
causes. We provide some examples in the Appendix §B.
We believe our approach is more practical and scalable than
generating monolithic drivers [15], [29] because NEXZZER can
dynamically learn and filter misuse while monolithic drivers
are not effective unless their misuse is manually fixed.

2) Reasons of API Misuse in NEXZZER: We investigated
the causes of unrecognized API misuse in NEXZZER and
concluded the following reasons.
Incomplete Rule-based Approach The first reason for API
misuse in NEXZZER is that our rules in §III-D4 are incomplete.
For example, in tesseract, NEXZZER triggered a crash. The
crash was caused by the existence of an Invalid Edge from
API TessBaseAPIEnd to TessBaseAPIGetInputImage, which
NEXZZER successfully learned. However, the execution in

TessBaseAPIGetInputImage does not trigger a Use-After-Free
but a segmentation fault due to accessing null pointers cleared
by TessBaseAPIEnd. This causes NEXZZER (and also Hopper
[20]) to not categorize it as a UAF misuse.
Unrecognized Implicit Constraints Some more implicit
API constraints are another source of unknown crashes in
NEXZZER. For example, arguments in one API might have
correlated constraints that NEXZZER cannot model, such as
multiple length arguments for multi-dimensional arrays. Addi-
tionally, the method of type-matching (§III-C) might introduce
over-approximated Def-Use edges. In OpenSSL, we might
build a wrong edge from the return type of BN value one to
the first parameter of BN add. This is because BN value one
returns a constant big number resides in the global static
region, while BN add tries to update it illegally.
Unsupported API Usage Some API usage is not supported
by NEXZZER: APIs that trigger the stdin and are blocked
during fuzzing, resulting in unrecognized timeout executions;
mutating format strings of APIs such as printf() leads to
crashes, which are also related to API misuse.

We believe that NEXZZER provides a foundation to support
more complex constraints, including the cases mentioned
above. This can be achieved by refining the types of APIGraph
edges or adding support for edges between parameters within
a single node, which we leave as future work.

VI. RELATED WORK

API-Aware Fuzzing. Compared to standalone program fuzzing
with one single entry to receive test inputs, API-aware fuzzing
is used to test multiple interfaces together. Many researchers
are focusing on API-aware fuzzing due to its inherent chal-
lenges of constraining various interdependent APIs. For ex-
ample, for software libraries, the community has developed
and maintained a large scale of effective fuzzing drivers
[1], [25] for continuous testing. Furthermore, browser APIs
[32], [30] and operating system kernels with system call
interfaces are also popular targets [12], [13]. In the domain
of web applications employing RESTful APIs [33], API-aware
fuzzing is also widely applied. RESTler [31] can generate API
requests based on the Swagger [4] specifications and guide
mutations using service response feedback.
Fuzzing Automation. Fuzzing has been a hot research topic.
FUDGE [16] uses a single library consumer to slice the
Abstract Syntax Tree, extract multiple API call snippets,
and create several small drivers. FuzzGen [15] constructs
and merges API call graphs with control flows and data
dependencies. Cross-platform initiatives like APICRAFT [19]
and WINNIE [26] analyze execution traces on MacOS and
Windows to generate fuzzing drivers. RUBICK [22] creates
driver code for JAVA libraries using control-flow-sensitive
analysis. DAISY [21] enhances driver sequence effectiveness
by analyzing object resources. UTOPIA [29] uses unit test
frameworks to reproduce API sequences and infer intra-
API argument attributes. HOPPER [20] focuses on intra-
API attributes with dynamic learning strategies. GraphFuzz
[18] builds data-flow graphs for sequence mutation, needing
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manually written schemas for accurate API dependencies. For
OS targets, MoonShine [34] uses system call execution traces
to produce high-quality input seeds. SyzGen [35] and KSG
[36] assist kernel fuzzing by automatically generating system
call descriptions from kernel source code.

VII. CONCLUSION

In this paper, we propose NEXZZER, an automatic library
fuzzing framework that incorporates a hybrid strategy of
static consumer analysis and dynamic relation learning to
facilitate fuzzing automation on a wide range of library
targets. NEXZZER also automatically identifies and filters out
most false positive crashes caused by API misuse using an
effective rule-based approach. The evaluation of NEXZZER
demonstrates its significant improvements in the library code
coverage and vulnerability-finding ability. Moreover, with
NEXZZER, we detected 27 new vulnerabilities in widely used
libraries including OpenSSL and libpcre2. 24 vulnerabilities
were confirmed by the library developers and 9 were fixed
because of our reports.
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APPENDIX

A. Vulnerability-Finding Abilities

We provide the deduplicated vulnerabilities newly detected
by NEXZZER in Table V.

We also provide the results of different library fuzzers
in reproducing known vulnerabilities in Figure 4 and Table
VI. We use the Google Fuzzer Test Suite (FTS) [10] as the
benchmark of vulnerability reproduction. As the result shows,
NEXZZER excels at discovering known library vulnerabilities.

Besides the concluded reasons of better accuracy and di-
versity (§V-B), better automation is also a crucial reason for
NEXZZER to reveal previously unknown vulnerabilities. More
than half of the vulnerabilities in Table V lies in APIs that are
poorly or even not covered in existing fuzzing drivers or unit
tests, which demonstrates NEXZZER’s advantages of automa-
tion and scalability. NEXZZER also find deep vulnerabilities
in covered APIs. We provide details of two interesting cases
below, which have been fixed in the latest version of libraries.

1 r0 = BN_new()
2 r1 = BN_MONT_CTX_new()
3 r2 = BN_CTX_new()
4 BN_sub_word(r0, 0x1)
5 BN_set_bit(r0, 0x1e4abbe6) // set a large integer
6 r3 = BN_dup(r0)
7 r4 = BN_dup(r0)
8 r5 = BN_dup(r0)
9 BN_MONT_CTX_set(r1, r5,r2)

10 BN_mod_exp_mont_consttime(r0, r3, r4, r5,
11 r2, r1) // trigger an integer overflow

Listing 8: PoC seed 1

1 r0=pcre2_general_context_create(0x0, 0x0, "}@N\x00")
2 r1=pcre2_compile_context_create(r0)
3 r2=pcre2_compile("}@N\x00", 0x4, 0x4000000,
4 &(0x2000100)=0x4000000, &(0x2000140)=0x0, r1)
5 r3=pcre2_match_data_create(0x1000000,
6 r0, r2) // trigger an invalid type conversion
7 r4=pcre2_match_context_create(r0)
8 pcre2_match(r2, "}@N\x00", 0x4, 0x0,
9 0xe, r3, r4) // heap buffer overflow

Listing 9: PoC seed 2

An integer overflow in OpenSSL. The first seed shown in
Listing 8 is an integer overflow from the OpenSSL’s Big Num-
ber APIs. The API BN set bit in line 5 sets a member in the r0
to a very large integer. Then inside BN mod exp mont const
(line 10), the API would calculate a buffer size based on the
member of r0 with a limit check. However, if the required
size is overflowed to a negative integer, thereby bypassing the
limit check, it leads to potential buffer overflow or Denial-Of-
Service.

The vulnerability is difficult for existing approaches to
explore because manual or synthesized drivers usually cover a
highly limited input space. For example, in manual drivers re-
lated to the Big Number APIs in Listing 7, they set up random
BIGNUM content with a byte array by using the BN bin2bn
API, making it impossible to overflow the vulnerable vari-
able since fuzzing engines cannot produce such large byte
arrays. More importantly, large-scale APIs make it extremely
challenging for consumers to cover enough sequence usage.

TABLE V: Newly Discovered Vulnerabilities

Targets Type Function Status ID

OpenSSL Integer Overflow BN mod exp mont consttime Fixed 4378e
OpenSSL Integer Overflow BN bntest rand Fixed 23704
OpenSSL Integer Overflow ASN1 BIT STRING set bit Fixed 20719
OpenSSL Integer Overflow ASN1 BIT STRING get bit Fixed 20719
OpenSSL Undefined Behavior BN GF2m mod inv Reported 19826
OpenSSL Integer Overflow RC2 ofb64 encrypt Confirmed 22986
OpenSSL Stack Overflow RC2 cfb64 encrypt Confirmed 22986
OpenSSL Integer Overflow TXT DB create index Confirmed 22986
OpenSSL Integer Overflow TXT DB get by index Confirmed 22986
OpenSSL Stack Overflow CAST ofb64 encrypt Confirmed 22986
OpenSSL Integer Overflow CAST cfb64 encrypt Confirmed 22986
OpenSSL Stack Overflow DES ede3 ofb64 encrypt Confirmed 22986
OpenSSL Stack Overflow DES ofb64 encrypt Confirmed 22986
OpenSSL Stack Overflow DES cfb64 encrypt Confirmed 22986
OpenSSL Stack Overflow DES ede3 cfb64 encrypt Confirmed 22986
OpenSSL Stack Overflow RC5 32 ofb64 encrypt Confirmed 22986
OpenSSL Stack Overflow RSA padding add PKCS1 type 1 Confirmed 22986
OpenSSL Stack Overflow BF ofb64 encrypt Confirmed 22986
libxml2 Null Pointer Dereference xmlCopyNode Confirmed 463

Relic Integer Overflow bn grow Fixed CVE-2023-36326
Relic Heap Overflow bn get prime Fixed CVE-2023-36327

libTom Integer Overflow mp grow Fixed CVE-2023-36328
libpcre2 Heap Overflow pcre2 match data create Fixed CVE-2023-29822
libGMP Integer Overflow mpz nextprime Fixed CVE-2022-46386

lcms Buffer Overflow cmsCreateExtendedTransform Fixed 46355
libopus Stack Overflow opus decode Reported 329

tesseract Integer Overflow TessBaseAPIAdaptToWordStr Reported 4299

There are hundreds of Big Number APIs, and the vulnerable
sequence in Listing 8 does not appear in any consumer.
An heap overflow in PCRE2. Listing 9 shows a heap
overflow in PCRE2. In line 5, the first argument of
pcre2 match data create is passed in as a 32-bit integer.
However, it is implicitly cast to a 16-bit integer in a member
of r3, which results in an integer overflow but would not crash
instantly. Subsequently, in pcre2 match (line 8), the over-
flowed member causes a heap buffer overflow vulnerability.
The vulnerable arguments in Listing 9 are usually treated as
constants and remain untested in existing fuzzing drivers.

Fig. 4: The Venn diagram of
found known vulnerabilities
in FTS.

Manual Hopper NEXZZER

lcms 1 4 4
libxml2 4 1 2
libpcre2 2 2 3
openssl 2 0 2

boringssl 1 0 1
harfbuzz 1 1 1

Total 11 8 13

TABLE VI: Numbers of found
known vulnerabilities in differ-
ent libraries in FTS.

B. API Relation Case Studies
1 BN_mod_exp_mont_consttime::SeedSpace[(Listing 8)]:
2 Value_Set: BN_set_bit::arg1::[0, 0x80000001]
3 Invalid_Edges: BN_set_bit -> BN_mod_exp_mont_consttime
4

5 pcre2_match::SeedSpace[(Listing 9)]:
6 Value_Set: pcre2_match_data_create::arg0::[0, 0xffff]
7

8 APIGraph::Invalid_Edges:
9 BN_free::arg0 -> BN_add::arg0

10 BN_free::arg0 -> BN_sub::arg0
11 BN_generate_prime -> BN_add_word (suspicious bug)
12 ...
13 APIGraph::Valid_Edges:
14 EVP_DecryptInit::arg0 -> EVP_DecriptUpdate::arg0
15 RSA_generate_key_ex::arg0 -> RSA_private_decrypt::arg3
16 xmlUnlinkNode -> xmlAddChild (suspicious bug)
17 xmlUnlinkNode -> xmlAddChildList (suspicious bug)
18 ...

Listing 10: Seedspaces and Relations Example
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Fig. 5: API misuse (i.e., crashing inputs leading to API misuse) Ratio Trends

Listing 10 shows examples of API relations learned by
NEXZZER. Line 1 to 6 shows the SeedSpaces stored in the
API nodes representing the two bugs described above (sub-
section A). Based on the Value-Set constraints (i.e., the seed
is crashing outside the value range), one can easily infer that
there are likely integer overflow vulnerabilities during manual
analysis.

Lines 9 to 11 show several learned Invalid Edges. The first
two edges represent identified API misuse (Use-After-Free)
during fuzzing, while the third edge (from BN generate prime
to BN add word) is counterintuitive and suspicious. Af-
ter manual analysis, we discovered that BN generate prime
would implicitly free the BIGNUM structure passed in if some
internal calls failed and thus cause a UAF in BN add word.
Such behavior is not well-designed and has been deprecated.
Lines 14 to 15 are examples of several Valid Edges that
represent correct API usage, where the source API is necessary
for the target API’s intended usage. However, lines 16 and 17
imply a controversial design in libxml2’s API xmlAddChild
and xmlAddChildList. It indicates that if an XML node is
about to be added to a tree, it should be a new or unlinked
node instead of a linked node in a tree. While the developer
confirmed that the ideal implementation should handle such
cases, it is assessed and will not be fixed due to historical
internal compatibility.

These cases illustrate that NEXZZER’s relation learning not
only facilitates vulnerability analysis but also provides instruc-
tive knowledge to understand and refine the API designs.

Modeling API relations by the APIGraph edges facilitates
effective API sequence generation (§V-B3) and is also used to
design certain filtering rules for common misuse. As described
in §III-D4, we filter edge-related misuse including the miss of
Def-Use edges and the presence of certain Invalid edges (i.e.,
UAF misuse). However, we do not attempt to identify whether
a Valid Edge indicates API misuse or a potential vulnerability
currently. Because, based on our practice, Valid Edges are hard
to categorize by heuristic rules and their number is relatively

small, which makes it feasible for manual triage. Therefore,
more effective methods of filtering misuse based on Valid
Edges are a potential improvement for NEXZZER, such as
improving the static analysis on consumers or utilizing other
extra resources like a language model.

Algorithm 1: Node Insertion

1 Input: APIGraph G, Seed S, Position P
2 Output: New Seed S′

3 invalid nodes←− ∅;
4 valid nodes←− ∅;
5 for prev node ∈ S.nodes[0..P ] do
6 for edge ∈ G[prev node].out edges do
7 if edge.type = INVALID then
8 invalid nodes←−

invalid nodes ∪ edge.node;
9 end

10 end
11 for post node ∈ S.nodes[P..end] do
12 for edge ∈ G[post node].in edges do
13 if edge.type = INVALID then
14 invalid nodes←−

invalid nodes ∪ edge.node;
15 end
16 end
17 insert node←−

random choose(G.all nodes \ invalid nodes);
18 for edge ∈ G[insert node].in edges do
19 if edge.type = VALID then
20 valid nodes←− valid nodes ∪ edge.node;
21 end
22 S′ ←− S.insert(node, valid nodes);

C. NEXZZER Algorithms
We describe several key algorithms in NEXZZER’s fuzzing

process in this section, including API node insertion, seed
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Algorithm 2: Learning relations across APIs

1 Input: APIGraph G, API Sequence S, target API
index idx

2 status←− execute (S) .status
3 E ←− ∅
4 for i ∈ idx-1 −→ 0 do
5 for j ∈ i −→ idx-1 do
6 Edu ←−

S.find edges (S.nodei, S.nodej , Defuse)
7 Edep ←−

S.find edges (S.nodei, S.nodej , Dep)
8 if Edu ∪ Edep = ∅ then
9 S′ ←− S.remove (i)

10 status′ ←− execute (S′) .status
11 if status′ ̸= status then
12 E ←− E ∪ Edge (S.nodei, S.nodeidx)
13 else
14 S ←− S′

15 end
16 end
17 end
18 G.update (S,E)

Algorithm 3: A Fuzzing Iteration

1 Input: APIGraph G, Seed Corpus C.
2 ▷ E: learned edges.
3 ▷ X: learned argument constraints.
4 ▷ S: current seed.
5 S ←− mutation generation (APIGraph,C)
6 feedback ←− execute (S)
7 idx←− feedback.target idx
8 SS ←− G.nodeidx.SeedSpaces
9 if duplicate (S, idx, SS, feedback) then

10 return
11 S,E ←− InterAPI relation learning (G, S, idx)
12 X ←− IntraAPI relation learning (S, idx)
13 SS.update (S,X,E)
14 for e ∈ RULES do
15 check misuse (e, S, SS)
16 end
17 G.update (SS)

minimization, and a complete fuzzing iteration.
1) API Node Insertion: When inserting an API call into

a Liblang seed, NEXZZER’s mutator guarantees that no inter-
API misuse encoded in the APIGraph will be introduced into
the mutated seed after insertion.

Specifically, algorithm 1 takes a randomly chosen position P
in a seed S and the APIGraph G as inputs. The algorithm first
finds out nodes that are invalid to be inserted at P. The invalid
nodes include all API nodes in G that can be reached by any
node in S that lies before P through invalid edges (line 5-10).
The invalid nodes also include all API nodes in G that can

reach to any node in S that lies after P through invalid edges
(line 11-16) Excluding these invalid nodes when choosing a
candidate node for insertion (line 17) guarantees that no invalid
edge is introduced to the new seed. The algorithm also finds
out known valid nodes that connected to the candidate node
for insertion. Line 22 inserts the candidate node with its valid
nodes together.

2) Learning Inter-API Relations: Algorithm 2 shows
NEXZZER’s algorithm of learning inter-API relations. Besides
the description in §III-D3, it is worth noting that there are
benefits of performing the removal from back to forth (line
7). During the removal, we do not remove nodes that have
Def-Use out-edges to not only Nt but any subsequent node
preserved in the seed. Because subsequent nodes that are
already preserved indicate their direct/indirect relations to Nt.
If a node N is preserved during the back-to-forth iteration,
and a previous node Np has direct Def-Use relation to N , this
means Np has indirect relations to Nt through N and should
not be removed. For example, in r1=f1(); r2=f2(r1); f3(r2),
although f1 has no direct relations to f3 (Nt), it can not be
removed because it has indirect relations through r1 in f2 to
f3. The back-to-forth iteration facilitates the maintenance of
such indirect relations.

3) A Fuzzing Iteration: Algorithm 3 depicts the high-level
process of a fuzzing iteration in NEXZZER. It first randomly
applies either the generation or mutation strategy (§III-D1
and §III-D2) to produce and execute a new seed (lines 5-6).
Based on the execution status, it obtains the target API node’s
index in the seed (line 7), which either triggers new cover-
age or crashes. The deduplication (line 10) checks whether
previous seeds stored in the SeedSpace (line 9) have similar
crashes with the current seed (§III-D3) and subsequently learns
inter/intra- API relations. The learned relations and feedback
are saved in the SeedSpace (line 14). Finally, for each crash,
utilizing its learned relations, NEXZZER identifies if it is
misuse based on the predefined filtering rules (lines 15-17).
The SeedSpace is updated back to the APIGraph with new
relations (line 18).
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