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Abstract

Existing kernel storage stacks for NVMe SSDs struggle to
address performance interference between I/O requests from
tenants with different SLAs, leading to the multi-tenancy
issue. Addressing this requires separating their I/O requests
within the NVMe I/O queues (NQs). However, our analy-
sis reveals that the static CPU core-NQ bindings of current
storage stacks restrict their flexibility to achieve this goal.

We propose DAREDEVIL, a novel kernel storage stack, which
addresses this issue by decoupling the static bindings and
allowing full connectivity between cores and NQs. Therefore,
it grants multi-tenancy control the flexibility to freely route
requests among NQs according to their SLAs. Moreover, it
incorporates multi-tenancy-aware scheduling on NQs to fa-
cilitate efficient request routing. Our evaluation shows that
DAREDEVIL can reduce I/O request latency by up to 3-170x
compared to current kernel storage stacks, while maintain-
ing comparable throughput.

CCS Concepts: « Software and its engineering — Operat-
ing systems; « Information systems — Direct attached
storage.
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1 Introduction

Modern cloud servers host diverse I/O services for various
processes, ranging from interactive web applications that
intermittently fetch web pages to deep learning training
workloads that periodically checkpoint model states [40, 89].
In this paper, such processes that require I/O services from
the server are referred to as tenants.

Tenants have specific performance requirements for I/O
services, according to which, they can be classified into
two categories: latency-sensitive tenants (L-tenants) and
throughput-oriented tenants (T-tenants). L-tenants demand
timely responses to their I/O requests (L-requests) [41, 53],
while T-tenants prioritize batched completion of their re-
quests (T-requests) and are less sensitive to latency [60, 74,
98]. To meet these demands, the server’s operating system
(OS) is expected to enforce the processing and completion
of I/O requests within the timeframes stipulated by tenants’
specified service-level agreements (SLAs) [30].

To facilitate the I/O services provided to tenants, cloud
servers typically use locally attached SSDs as temporary stor-
age to deliver higher I/O performance. The local SSDs are
virtualized into multiple logical instances and shared among
tenants, offering more timely I/O services compared to re-
mote storage [18, 19, 61, 78]. For instance, Google accelerates
its provided I/O services by directing I/O requests to local
SSDs before persisting them to remote storage [18].

This cloud server setup directs multi-tenant I/O requests
to the local storage, which is then expected to deliver high-
performance I/O services and satisfy diverse SLAs. To this
end, Non-volatile Memory Express (NVMe) SSDs [28] are
widely deployed in cloud servers as local storage because
of their performance potential to achieve both low latency
and high throughput [5, 27, 94]. In addition, one NVMe SSD
can support multiple namespaces, each functioning as an
SSD partition utilized by the server OS to logically isolate
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I/O requests from multiple tenants [69]. One key feature of
NVMe SSDs to achieve high performance is the multi-queue
mechanism [17, 99], which allows the OS to interact with the
SSDs via a set of NVMe I/O queues (NQs) in parallel during
I/O services.

To leverage the parallelism offered by NVMe SSDs and
utilize multiple namespaces, the Linux kernel incorporates
the Multi-Queue Block 10 Queueing Mechanism (blk-mq)
[24] into its storage stack. blk-mq scales the multi-core archi-
tecture with the NVMe multi-queue feature by establishing
static bindings between CPU cores and available NQs. For
each NVMe namespace, blk-mq creates per-core software
queues (SQs) and per-NQ hardware queues (HQs). I/O re-
quests issued from a core traverse the corresponding SQ-HQ
mapping and are strictly submitted to the SSD via the NQ
associated with the HQ. This structure enables simultaneous
submission of requests from multiple cores to multiple NQs,
thereby exploiting the high performance of NVMe SSDs.

However, the performance potential of NVMe SSDs can-
not be consistently utilized when tenants with different
SLAs demand I/O services from the same SSDs. In this case,
tenants are prone to suffering from the multi-tenancy is-
sue. Specifically, latency-sensitive I/O services of L-tenants
can be severely impacted by massive I/O requests from T-
tenants when their requests become intertwined within the
same NQs. This is because T-requests are typically issued
in batches, processing them requires more effort from the
SSDs and consequently takes longer to complete. As a re-
sult, within the same NQ, the head-of-line (HOL) T-requests
can delay and even obstruct the I/O services of subsequent
L-requests. This issue increases the I/O latency of L-tenants,
leading to SLA violations.

Addressing the multi-tenancy issue for NVMe SSDs, as in-
dicated by its root cause above, necessitates separating L- and
T-requests within NQs. Prior works have proposed both hard-
ware and software solutions. Hardware approaches involve
redesigning the SSD internal structures to allocate distinct
physical resources for L- and T-tenants [8, 38, 45, 50, 54, 75,
86, 97, 98]. However, these methods face limited applicabil-
ity due to the heavy reliance on amendable SSDs’ internal
hardware, whereas commodity SSDs remain black boxes. In
contrast, software approaches are applicable to black-box
SSDs, as they are built upon blk-mqg and aim to enforce NQ-
level request separation within the storage stack [39, 90, 98].

Nevertheless, the effectiveness of existing software ap-
proaches is hindered by two fundamental constraints of
blk-mq: (1) inflexibility resulting from the static bindings
between cores and NQs, and (2) lack of support for multi-
namespace scenarios.

Inflexibility. Limited by the static bindings between cores
and NQs, previous works (e.g., D2FQ [90] and FlashShare [98])
have to statically overprovide NQs for each core to achieve
NOQ-level separation. As a result, efficiency is compromised
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when NQs mapped by I/O-intensive cores become over-
loaded while others remain underutilized. To enhance flex-
ibility, blk-switch [39] performs cross-core scheduling to
move requests or tenants among CPU cores for separation.
However, the reliance on cross-core scheduling to perform
multi-tenancy control mixes the optimization objectives of
both, leading to intricate strategies for both mechanisms and
even resulting in conflicting optimization goals (§3.2).
Lack of multi-namespace support. The blk-mq structure
is constructed for each NVMe namespace. However, since an
SSD can be divided into multiple namespaces, existing multi-
tenancy control within the storage stack, which operates for
each blk-mq structure, cannot obtain a global view of the
multi-tenancy issue across all namespaces. This results in
sub-optimal solutions illustrated in Figure 3c, where each
namespace exclusively serves either L- or T-requests, yet
performance interference persists because namespaces share
the same set of NQs for I/O services, causing these requests
to remain intertwined within NQs (§3.2).

To address these limitations of existing storage stacks, we
propose DAREDEVIL, a novel storage stack for multi-tenancy
control. DAREDEVIL decouples the static mapping between
CPU cores and NQs by replacing the static I/O paths with a
request routing scheme, which flexibly routes I/O requests
from a core to any NQs. This grants each core unrestricted
access to NQs during I/O services, achieving full connectivity
between cores and NQs without relying on cross-core sched-
uling. Moreover, without being strictly bound to cores, each
NQ s treated as an independent unit. DAREDEVIL assigns each
NQ to serve either L- or T-requests and dispatches the I/O
service routine accordingly. As a result, achieving NQ-level
separation only involves routing requests to the NQs that
serve their SLAs. To efficiently select NQs for multi-tenancy
control, DAREDEVIL incorporates a lightweight NQ schedul-
ing mechanism that integrates multi-tenancy awareness and
schedules the proper NQs for request routing,.

In addition, the type of requests served by each NQ is
solely associated with the NQ, meaning that this informa-
tion is consistent across namespaces. Therefore, DAREDEVIL’s
request routing scheme operates uniformly across names-
paces, providing support for multi-namespace scenarios.

We implemented a prototype of DAREDEVIL in the Linux
kernel and evaluated it on a wide range of multi-tenant cases,
including single- and multi-namespace scenarios with inten-
sive I/O pressure. The results show that DAREDEVIL achieves
significant performance improvement compared with the
vanilla kernel and the state-of-the-art blk-switch [39] un-
der multi-tenant I/O services. In the single-namespace case,
DAREDEVIL reduces the I/O latency of L-tenants by 3-170x
while maintaining comparable and stable throughput, satisfy-
ing SLAs of different tenants even under high I/O pressure. In
the multi-namespace case, DAREDEVIL also reduces the 99.9¢ h
tail latency and the average latency of L-tenants by up to 15X
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and 39X, respectively. DAREDEVIL has been open-sourced at
https://github.com/HKU-System-Security-Lab/Daredevil.

2 Background
2.1 NVMe SSDs

For each SSD, the NVMe specification supports up to 64K
NVMe I/O queues (NQs), as SSDs’ performance utilization
typically scales with the number of used NQs [17, 99]. These
NQs are generally placed in the OS memory region shared
by the NVMe driver and the NVMe controller. The OS uses
its driver to transfer data to and from SSDs by placing and
retrieving data in NQs. The NVMe controller handles the data
flow between NQs and the SSD. Additionally, the controller
can divide the SSD into multiple namespaces, each providing
an abstraction of space isolation and being regarded as a
physical device by the OS. However, these namespaces still
share the same set of NQs in I/O services [28].

Figure 1 depicts the I/O service routine. Two types of NQs
are specified: NVMe submission queues (NSQs) and NVMe
completion queues (NCQs). Each NSQ is strictly bound to
an NCQ, forming an NQ pair, while an NCQ can be bound
by one or multiple NSQs. During I/O services, the driver en-
queues requests to NSQs and notifies the controller (Step @).
The controller then fetches these requests to the SSD (Step
). When multiple NSQs have enqueued requests, the con-
troller decides the order of NSQ fetching based on its queue
arbitration mechanism, which operates in a lightweight man-
ner to facilitate the subsequent concurrent processing of
NQs [28]. For generalizability, this paper assumes the default
round-robin mechanism of NVMe controllers Subsequently,
the controller decomposes the fetched requests and transfers
them to flash chips for final services (Step @) [86].

<((NVMe Driver IRQI~
“| NSQ Batched NCQ

A
E Nétify Per- Req@ E
(1)
@1Fetch NVMe Controller |:| (1)
L oy Decompose o .
-& Transfer@E ‘B Complete
Flash Chips ﬂlServe

Figure 1. I/O service routine for NVMe SSDs. Different blue
colors indicate I/O requests targeting different namespaces.

élock Layer

Upon completion, the controller places completed requests
in their corresponding NCQs (Step @) and notifies the driver
by interruption or polling [68]. We focus on the interruption
approach due to its generality. Each NCQ has an interrupt
request (IRQ) vector registered on a CPU core. The vector is
associated with an interrupt service routine (ISR) for process-
ing completed requests. When the controller issues an IRQ
to signify request completion on an NCQ, its corresponding
CPU switches to executing the associated ISR (Step @). Then
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the driver retrieves completed requests and by default, com-
pletes them in a batch (Step @), saving the per-request fast
completion path only for those with special requirements.

2.2 The Static Kernel Storage Stack

The Multi-Queue Block IO Queueing Mechanism (b1k-mq) [24]
was introduced into the Linux kernel storage stack to exploit
the NVMe multi-queue feature and mitigate the contention
issue [7], in which multiple cores contend for the same NQ.
blk-mq establishes two types of queues within its structure:
software queues (SQs), each representing a CPU core, and
hardware queues (HQs), each mapped to an NQ pair. As
shown in Figure 3b, each SQ is exclusively mapped to one
HQ while each HQ can be mapped by one or more SQs, as
the Linux kernel caps the number of used NQs by available
cores [59]. In this structure, requests issued from a core flow
through its SQ to the mapped HQ, which then dispatches
them to the mapped NQ pair. The blk-mq structure is cre-
ated for each physical device recognized by the OS. Thus,
for multi-namespace SSDs, each namespace is treated as a
physical device with its own blk-mq structure associated.
In essence, the blk-mq structure constructs static bindings
between CPU cores and NQs via the SQ-HQ mapping, where
cores strictly use their mapped NQs in I/O services. In this
way, blk-mq allows multiple cores to use NQs simultane-
ously, scaling the multi-core architecture with the NVMe
multi-queue feature to exploit SSDs’ superior performance.
Moreover, since each core only uses one NQ for I/O services,
blk-mq also reduces the possibility of potential contention.

2.3 The Multi-tenancy Issue

In this paper, tenants refer to processes requiring I/O services,
including I/O containers! and servers’ performance harvest-
ing daemons (e.g., data analytics in computing servers). In
cloud servers, tenants can share the same NVMe SSDs for
their own I/O services through SSD virtualization [1, 38, 54].
For instance, Amazon Web Services (AWS) virtualizes host
machines’ local storage devices as multiple instance stores,
which are provided to EC2 instances as temporary stor-
age to absorb frequently updated data [78]. Google Cloud
and Microsoft Azure also share their local storage of cloud
servers among compute instances for high-performance ser-
vices [18, 19, 61]. Additionally, an NVMe SSD can support up
to 128 namespaces, each serving different tenants [67, 69, 82].
These tenants are launched by users, including cloud users
(e.g., containers) and server administrators (e.g., storage per-
formance harvesting processes [75, 100]), with specific SLAs
for I/O services expected from the server OS.

Tenants with distinct SLAs behave differently. Latency-
sensitive tenants (L-tenants) expect low I/O latency delivered

Each container in Linux is a process sandboxed by specific Linux names-
paces and kernel features [20, 23].
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by the OS [39, 57, 98]. They have higher I/O rates and typi-
cally issue small requests (L-requests) that can be completed
quickly, invoking frequent IRQ handling [53, 84] and thus
exhibiting high CPU utilization. In contrast, throughput-
oriented tenants (T-tenants) prefer batched responses for
stable and comparable throughput, and can tolerate slight
performance degradation [42, 74]. Their requests (T-requests)
are often issued in bulk and take a long time to complete
(e.g., larger than 128KB in streaming data [88])%, consuming
fewer CPU cycles due to I/O waiting.

However, the OS can fail to satisfy L-tenants’ SLAs in I/O
services due to the multi-tenancy issue, where L-requests suf-
fer from degraded performance caused by I/O interference
from T-tenants. It occurs when L- and T-requests are inter-
twined within the same NQs, where the head-of-line (HOL)
T-requests prolong or even block the I/O services received by
subsequent L-requests. Specifically, considering the bulky na-
ture of T-requests, during submission, the NVMe controller
takes longer to fetch and decompose HOL T-requests from
an NSQ, and upon completion, HOL T-requests batched with
L-requests within NCQs also require heavy-labor processing.
Consequently, the subsequent L-requests within the same
NQ experience extra in-queue latency.

Note that even though the Linux kernel employs the I/O
splitting mechanism, which can decompose T-requests into
multiple small ones for I/O scheduling opportunities within
the block layer [11], the multi-tenancy issue persists. This is
because within NQs, the split requests, consolidated together,
occupy the same size of space as the original one and take
up more NQ entries, mandating no less processing effort of
the controller than the original bulky T-request. Thus, HOL
T-requests can still incur the multi-tenancy issue.

3 Motivation
3.1 The Severity of the Multi-tenancy Issue

To explore the significance of the multi-tenancy issue, we
compare the performance of L-tenants with and without
interfering T-tenants within the same NQs. We use the Flex-
ible I/O Tester (FIO) benchmark [3] to launch tenants on
the SV-M machine (see §7 for detailed configurations). We
fix the number of L-tenants to 4, but vary the number of
T-tenants. These tenants are spread across 4 CPU cores. The
vanilla blk-mq, by design, co-locates L- and T-tenants within
the same NQ and thus causes interference (w/ Interfere). To
separate L- and T-tenants within NQs, we modify blk-mq so
that L- and T-tenants are evenly distributed to the first and
the second half of assigned NQs, respectively (w/o Interfere).
We constrain 4 NQs for the modified blk-mq to align with
the 4 core-NQ bindings used in vanilla bl1k-mq.

Figure 2 shows the average and the 99" percentile tail
latencies of L-tenants when the number of co-running T-
tenants increases from 0 to 32. Compared with non-interference

2The size of the request is determined at the time of system calls.
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(a) L-tenant 99.9'" tail latency.  (b) L-tenant average latency.
Figure 2. I/O latency of L-tenants with T-tenants interfering
within the same NQs (w/ Interfere) and using separate NQs
(w/o Interfere).

(W/o Interfere), the I/O pressure from T-tenants significantly
worsens the performance of L-tenants, especially when the
pressure is high. The average and tail latencies of interfered
L-tenants are prolonged by up to 3.49x and 15.7x (i.e., when
32 T-tenants are launched), respectively. This performance
degradation evidences the longer delay experienced by L-
requests and the severity of the multi-tenancy issue.

3.2 Constrained Prior Optimizations

Mitigating the multi-tenancy issue from the software level,
as discussed above, requires NQ-level separation of requests
with different SLAs. Prior works aim to achieve this goal but
inevitably suffer from four drawbacks (see Table 1) because
they are built upon the static blk-mq structure.

Flashshare [98] and D2FQ [90], aside from their reliance on
specific hardware support, statically map more than one NQ
per HQ, each serving either L- or T-requests (see Figure 3a).
While this NQ overprovision achieves NQ-level separation, it
fails to flexibly exploit all available NQs, leading to suboptimal
cases. Specifically, under I/O-intensive scenarios, I/O-heavy
cores can overload their mapped NQs, blocking subsequent
requests. However, they cannot leverage the underutilized
NQs mapped by I/O-light cores to alleviate I/O pressure, as
the static core-NQ binding prevents one core from directly
using NQs mapped by other cores for I/O services.

Table 1. Comparison between DAREDEVIL and prior works.
"-" means the factor is not considered in the original design.

Targets Factory Factor, Factors Factory
blk-mq [7] - - X
Flashshare [98] X X X
D2FQ [90] X X X
blk-switch [39] X X
DAREDEVIL

Factor;: hardware independence; Factor,: NQ exploitation; Factors:
cross-core scheduling autonomy; Factory: multi-namespace support.

Flexibly utilizing NQs within the b1k-mq structure necessi-
tates cross-core scheduling. In this regard, blk-switch [39]
prioritizes I/O services of L-tenants for each SQ-HQ bind-
ing and schedules T-tenants across cores. This approach
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directs T-requests to target NQs of different SQ-HQ bind-
ings within each blk-mq structure, thereby separating them
from L-requests (see Figure 3b). However, the reliance on
cross-core scheduling mixes cross-core scheduling with multi-
tenancy control, causing conflicted optimization goals, i.e.,
balanced CPU usage and NQ-level separation: the former
goal prefers to colocate L- and T-tenants on the same cores
given their complementary CPU utilization, while the latter
schedules them to different cores for separation. In addition,
cross-core scheduling faces constrained optimization with
limited available cores as the scheduling space is small (see

§7.1).

(c) Lack of multi-
namespace support.

(b) Cross-core
scheduling.

(a) NQ overpro-
vision.

Figure 3. (a) and (b) showcase the current approaches to
perform multi-tenancy control within blk-mq. (c) depicts
their incapability to recognize the multi-namespace case.

Moreover, prior works only focus on multi-tenancy con-
trol within each blk-mq structure. As multi-namespace SSDs
are associated with multiple blk-mq structures, these works
cannot observe the multi-tenant I/O services in other names-
paces, resulting in potential pitfalls. As depicted in Figure 3c,
even if L- and T-tenants target different namespaces, their
requests still intertwine inside NQs. This is because the HQ
layer of blk-mq hides away the information of NQs from the
block layer, which limits coordination across namespaces.
Our goal: Having identified the limitations of current stor-
age stacks, we aim to explore a general software approach to
integrate flexibility into the storage stack, while achieving
efficient multi-tenancy control with multi-namespace sup-
port.

4 Overview of DAREDEVIL

DAREDEVIL is a generic kernel storage stack compatible with
the default setting (i.e., multi-queue feature) of NVMe SSDs.
It targets cloud servers with multi-tenant I/O services that
access their locally attached SSDs. A typical use case is the
database servers using local storage for high-performance
I/0 services despite the availability of remote storage [16, 93].

Figure 4 depicts the overview of DAREDEVIL. It operates
transparently by determining tenants’ SLAs based on stan-
dard syscalls and runtime information (§5.2), meaning that
the integration into the server’s OS kernel can be seamless.
DAREDEVIL introduces the decoupled block layer blex (§5.1),
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based on which, two components are incorporated into the
storage stack: the tenant-NQ request router troute (§5.2)
and the NQ-level regulator nqreg (§5.3).

The core of DAREDEVIL to achieve flexibility and support
multi-namespace is blex. blex decouples the static mapping
between cores and NQs by restructuring the block layer.
An SQ is still established on behalf of a CPU core but un-
like blk-mq, it is not confined to a specific NQ pair. Each
SQ has access to all NSQs with direct submission I/O paths
established. Consequently, this decoupled structure allows
requests to be freely routed from cores to NSQs for submis-
sion. To support multi-namespace cases, blex discards HQs
that hide away underlying NQs and instead, exposes the
states of NQs in the block layer via intermediate proxies.
The proxy layer is consistently observed across namespaces,
enabling multi-tenancy control to operate uniformly.

Atop blex, DAREDEVIL integrates troute and ngreg to
handle I/O requests in multi-tenant environments. troute
operates within the block layer and is vital in multi-tenancy
control. It achieves NQ-level separation by flexibly routing
L- and T-requests to different NQs. The requests are then
transferred to the driver, where ngreg dispatches the I/O
service routines based on their SLAs.

The decoupled structure of DAREDEVIL bears several imme-
diate benefits that directly tackle the drawbacks of existing
storage stacks. Besides providing consistent NQ states for 1)
multi-namespace support described above, it also achieves 2)
full exploitation of available NQs as unconstrained accessibil-
ity to NQs is enabled, and 3) full flexibility because request
routing operates independently to separate requests, elimi-
nating the need for assistance of cross-core scheduling.

However, without the static bindings that establish fixed
I/O paths, challenges arise in DAREDEVIL regarding its ef-
ficiency of request routing: 1) how troute can efficiently
route requests in a lightweight manner, given the complexity
of available I/O paths, and 2) how troute can ensure that
different tenants’ SLAs are effectively satisfied.

DAREDEVIL tackles the first challenge by employing the
concept of NQ heterogeneity, which, empowered by the de-
coupled structure, refers to the non-uniform I/O services
expected of different NQs. Specifically, because NQs are no
longer confined in static bindings, DAREDEVIL regards each
NQ as an independent unit. It uses nqreg to designate each
NQ with a logical priority, which specifies the SLA of re-
quests served by this NQ. Thus, NQ-level separation using
troute simply involves routing issued requests to an NQ
that corresponds to their SLAs (§5.2 and §5.3).

The second challenge is addressed by performing sched-
uling on NQs. As each NQ is treated independently, DARE-
DEVIL performs scheduling on them to schedule the most
suitable NSQ for the upcoming requests. It integrates multi-
ple performance-centric criteria into the scheduling process
to ensure its efficiency (detailed in §5.3).
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T-Tenant
L-Tenant

blex
Block Layer

NVMe Driver

Figure 4. The overview of DAREDEVIL.

5 DAREDEVIL Design

This section details the design of DAREDEVIL. In particular,
since the blex structure, troute, and nqreg are uniform
across namespaces, we choose to describe our design on a
per-namespace basis without loss of generality.

5.1 blex

Figure 4 shows the view of the blex block layer and the
exposure of NQs. DAREDEVIL only exposes NSQs to the block
layer since NCQs are implicitly observable due to the NSQ-
NCQ binding (§2.1). However, because NSQs are managed by
the NVMe driver, directly exposing NSQs blurs the boundary
between the block layer and the NVMe driver, which breaks
the modular implementation principle of Linux kernel [9]. To
adhere to this principle, blex incorporates an intermediate
proxy layer, nproxy, to cooperate with both modules while
leaving the modular implementation intact.

Each nproxy is exclusively mapped to an NSQ. It rep-
resents the state of the NSQ, which is a combination of at-
tributes manipulated by nqreg to decide the NSQ’s behaviors
in I/O service. Particularly, the information of each NSQ’s
paired NCQ, including its served SLA, is also stored in the
nproxy. Simply put, an nproxy is merely a lightweight wrap-
per containing information of its mapped NSQ, which is used
by troute and nqreg for request routing.

blex builds its decoupled structure atop the nproxies.
The static binding between SQs and HQs is replaced by the
full connectivity between SQs and nproxies. Each SQ has
available I/O paths to all nproxies, denoting unconstrained
request submission between CPU cores and NSQs. Each core
can have multiple I/O paths activated, depending on the deci-
sion of troute. Since nproxies are merely wrappers around
NQs, providing no queuing facility, I/O requests flowing into
them are transparently propagated to NSQs for submission.
Additionally, nproxies are device-specific and uniformly
observed across namespaces.

However, this decoupled structure of blex, despite achiev-
ing the benefits described in §4, raises concerns regarding the
potential overheads incurred by cross-core accesses to NQs:
during submission, multiple cores accessing the same NSQ
can contend for the NSQ entries to insert their requests;
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during completion, though NCQs are only processed by
their associated cores, the completed requests, if submitted
from different cores, are returned via cross-core interrupts.
Even though such overheads have existed in existing stor-
age stacks [7, 39], blex can exaggerate them as it puts no
constraints on NQ accesses.

DAREDEVIL leverages two important observations to ad-
dress this concern. First, request routing is vital as the choice
of selected NSQs determines the severity of overheads, which
in turn, serves as an important indicator of the overall fair-
ness and efficiency in NQ usage. Second, the trend of sup-
porting more NSQs in SSDs [83] suggests that requests from
different cores can be more scattered across NSQs, reducing
the possibility of contention within NSQs. Therefore, DARE-
DEVIL integrates multiple criteria into the NQ scheduling of
ngreg, with troute considering all NQs in routing.

5.2 troute

troute is analogous to a network router, which performs
multi-tenancy control by routing tenants’ requests to ap-
propriate NSQs according to their SLAs. Despite its duty
being simple, troute is crucial in achieving efficiency as
request routing occurs in the critical I/O path and deter-
mines the NQ-level separation. Thus, troute must perform
lightweight tasks to avoid extra latency while matching the
SLAs of tenants and used NQs. It carries two tasks: assessing
tenants’ SLAs and routing requests accordingly.

SLA assessment. As tenants are created by users, who are
aware of tenants’ expected SLAs, troute leverages the user-
defined field of each tenant as the main reference for its
SLA. Each tenant has an ionice value that signifies its SLA
in I/O services. It defines the tenant’s base priority. Ten-
ants with real-time ionice values are treated as L-tenants,
whereas those without such requirements are categorized
as T-tenants. L- and T-tenants are assigned high- and low-
priority as their base priority, respectively.

Requests normally inherit priorities from their parent ten-
ants. However, T-tenants can issue outlier requests (i.e., syn-
chronous or metadata ones) that have special demands for
real-time responses, resulting in inconsistent SLAs between
tenants and requests. Therefore, during runtime, troute pro-
files each T-tenant’s I/O pattern regarding outlier requests.
A T-tenant that issues at least the same order of magnitude
outlier requests as normal ones is characterized as having
an outlier tendency. Such a tenant retains its base priority as
a T-tenant but receives an outlier tag, indicating its pattern
of issuing outlier L-requests regularly. Notably, the process
of determining tenants’ SLAs is dynamic. Changes in ionice
values or the profiling results of T-tenants adjust the SLAs
determined by troute accordingly.

Request routing. troute routes issued requests to an NSQ
for submission. The choice of NSQ for each request com-
plies with the request’s SLA reflected in its assigned priority.
Requests with different SLAs are routed to distinct NSQs



DAREDEVIL: Rescue Your Flash Storage from Inflexible Kernel Storage Stack

Algorithm 1 Request Routing

Require: Parent tenant P; Request rq;
1: if P.prio == high-prio then
2 route(rq, P.default)
3: else
4 if rq.sync or rg.metadata then
5 if P.tag == outlier then
6: route(rq, P.outlier)
7 else
8 NSQ « select_NSQ(high-prio)
9 route(rq, NSQ)

and thereby, completed on different NCQs. This achieves
NQ-level separation in multi-tenant I/O services, as troute
ensures that requests with diverse performance demands
receive corresponding I/O service within NQs.

As NSQs are managed by the NVMe driver, troute needs
to query ngreg to get the selected NSQ for request rout-
ing. ngreg, as detailed later in §5.3, performs multi-tenancy-
aware NQ scheduling to select the most suitable NSQ for
troute. However, regularly invoking NQ scheduling can
incur great overheads (§7.5). To reduce the frequency of
querying ngreg, troute distinguishes different contexts of
issued requests. Typically, issued requests are normal ones
as they share the same SLAs as their tenants. Only the outlier
requests issued from T-tenants require exceptional attention.
The two cases are referred to as the tenant-based context
and the request-specific context, respectively. The contexts
determine the strategies used by troute.

Algorithm 1 presents the procedure of context-specific
request routing. Each tenant is assigned a default NSQ during
initialization, in which troute invokes NQ scheduling with
the tenant’s base priority and assigns the returned NSQ as
its default NSQ. A tenant’s default NSQ can be dynamically
updated during runtime once troute detects changes in
its base priority. troute initiates the update process along
with the kernel’s original routine of changing a tenant’s
ionice value, which occurs asynchronously to the critical
I/O service path. Thus, in runtime updates, troute only
introduces the overhead of one extra query to nqreg, avoids
directly interfering with I/O services, and also synchronizes
tenants’ default NSQs with their changes in ionice values.

Figure 5 depicts the I/O paths used by tenants with differ-
ent SLAs and contexts. In the tenant-based context, requests
issued from a tenant are directly routed to its default NSQ
since both share the same priority. However, in the request-
specific context, the default NSQ is not eligible. The SLA of
outlier requests does not align with the I/O service expected
of the T-tenant’s default NSQ. In this case, troute differenti-
ates its request routing strategy depending on the presence
of outlier tags. Tagged T-tenants imply frequent submission
of outlier requests. Therefore, for such T-tenants, aside from
their default NSQs, troute assigns each one with an outlier
NSQ obtained by querying nqreg with high priority. Their

997

EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands

outlier requests are directly routed to the outlier NSQs, while
normal requests remain routed to the default NSQs. On the
other hand, T-tenants without the tag infrequently issue
outlier requests. Thus, troute treats these tenants’ outlier
requests as unusual conditions and queries nqreg with high
priority to fetch an NSQ on a per-request basis.

Apart from merely querying nqreg in NSQ selection, troute
provides feedback to assist in NQ scheduling. During each
query, troute notifies nqreg of the calling contexts. nqreg
utilizes this information to decide the update timing of its
NQ scheduling algorithm, detailed later in §5.3. troute also
records the distribution of CPU cores in NQ usage for nqreg.
It maintains a bitmap for each NSQ, which tracks the cores
of tenants that use this NSQ as the default or outlier NSQ.
This bitmap encodes the cores that claim frequent usage
of the NSQ and thereby, implies the potential submission-
side contention. Leveraging this information, NQ scheduling
becomes aware of potential contention and can adjust its
scheduling process accordingly.

Latency-sensitive NQ
path

ﬁ. tenant create / update
L T ﬁfﬁ>

‘ tr‘outle_I queryao path

Infrequent per-request
NQ path

Throughput-oriented
NQ path

— 1 Min-heaps to maintain
'~ Nas

¢ outlier tag

nqreg | @NQ schedule

Figure 5. I/O paths of tenants atop NQ heterogeneity.

5.3

ngreg regulates the behaviors of NQs in I/O services by
deciding the following attributes of each NQ: 1) the priority,
2) the timing of notifying the controller of enqueued requests,
and 3) the request completion path. The first attribute is
common for both NSQs and NCQs. The second and third
attributes are specified for NSQs and NCQs, respectively.
NOQ heterogeneity. ngreg assigns each NQ with a priority
and manages them accordingly. Figure 5 also illustrates the
layout of NQs in DAREDEVIL. nqreg treats NSQs and NCQs
separately and maintains a hierarchical logical layout atop
the NQ heterogeneity. During the initialization of the NVMe
driver, as nqreg cannot foresee the number of future running
L- and T-tenants, it conservatively divides NCQs and their
attached NSQs into two NQGroups with equal division. Each
NQgroup is assigned a priority specifying the SLAs its NQs
serve in I/O services. The high- and low-priority NQGroups
are designated to L- and T-requests, respectively. Within each
NQGroup, nqreg logically organizes NQs into a two-level
hierarchy: the NQGroup serves as the root that branches
to NCQs, with each NCQ attached by NSQs as leaves. This
hierarchy facilitates the NQ scheduling below.

nqreg
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The NQ heterogeneity forms the foundation for the roles

undertaken by ngqreg: NQ scheduling to select NSQs and I/O
service dispatching to accommodate different SLAs.
NQ scheduling. Upon receiving a priority from troute,
ngreg selects an NSQ by scheduling within the correspond-
ing NQGroup. The selected NSQ also implies the choice of
NCQs as indicated in the NQ hierarchy ( Figure 5). This en-
sures that requests with different SLAs are separated within
NQGroups. However, ineffective NQ scheduling can lead to
uneven request distribution across NQs, which results in in-
efficient NQ usage that degrades performance (e.g., inflated
latency as certain NQs are overloaded), as well as worsens
the potential cross-core overheads: imbalanced completion
IRQs among cores and increased contention within NSQs.

Fortunately, cross-core overheads inherently indicate the
distribution of request scattering. For instance, less con-
tention implies more dispersed tenants’ requests, and vice
versa. Therefore, nqreg integrates two criteria, i.e., IRQ-
balancing and contention reduction, into NQ scheduling.
It adopts a two-step procedure that decouples the selection
of NCQs and NSQs. Each step schedules one type of NQs
based on the corresponding criterion, which is reflected in
the merits of NQs as elaborated below.

Algorithm 2 depicts the scheduling procedure. The sched-
uling process is initiated by troute (cf. §5.2) with a given
target priority. It operates within the NQGroup of this prior-
ity. The NSQ that best satisfies the criteria in this NQGroup
is returned to troute. It first retrieves an NCQ from the
NQGroup and proceeds to select an NSQ from the NSQs
attached to the chosen NCQ (Line 18-20). At each step, the
target NQs are organized as a priority array using a min-
heap data structure [2], which is sorted based on the merit
of each NQ. Notably, in the case of 1:1 NSQ-NCQ binding,
the min-heap in the second step degenerates to a single NSQ,
which is directly selected without further scheduling.

The merit of an NQ measures its contribution made in
serving I/O requests. In each step, the NQ with the lowest
merit is scheduled to serve forthcoming requests, compensat-
ing for its relatively inadequate contribution to I/O service.
The calculation of merits employs the exponential smooth-
ing algorithm [32, 64] (Line 7) to thoroughly consider an
NQ’s historical and recent contribution in I/O service. It also
avoids bursts of merit values, which may result in an inac-
curate assessment of contributions. The algorithm applies
a decay ratio, i.e., « that ranges within (0.5, 1), on the NQ’s
historical merit ((1 — &) X meritg_;), which utilizes the NQ’s
historical information, while emphasizing its contribution
made within the recent period (@ X meritg).

Calculating merit varies according to the type of NQs,
considering the different criteria expected of each type.

o NCQ merit. The merit of an NCQ quantifies its contribution
in terms of IRQ-balancing (Line 4). This merit is determined
using the intensity of incoming and average per-interrupt
completed requests, which reflect the NCQ’s future and past
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Algorithm 2 NQ Scheduling

1: function MERITCALC(nQq)

2: merit;_; < nqg.merit

3: if nq.type == NCQ then
nq.in_flight_rqs

nq.complete_rqs

4: merity « ( nq.depth nq.rqs ) X nq.irgs
5: if nq.type == NSQ then
. . nq.in_lock_ps .
6: merit, « fqsubmitted rgs X ng.nr_claimed_cores
7: merit «— a X meritg + (1 — a) X meritg_;
8: return merit

9: function FETcHToP(merit_heap, m)

10: top <« merit_heap.top

11 merit_heap.mru —=m

12: if merit_heap.mru < 0 then

13: calc_each(merit_heap, MeritCalc)
14: merit_heap.re_sort()

15: merit_heap.mru < MRU

16: return top

17: function NQScHEDULE(prio, nqreg, m)

18: NQGroup « nqgreg.groups[prio]

19: ncq < FetchTop(NQGroup.merit_heap, m)
20: nsq « FetchTop(ncq.merit_heap, m)

21 return nsq

contributions to request completion. The incoming intensity

is calculated by the number of outstanding requests divided
nq.in_flight_rqs
nq.depth

expected to complete soon. The average intensity is the ra-
tio of the number of completed requests to received IRQs
(ie., %ﬁt}rqs). The product of these two ratios and the
number of IRQs determines the NCQ’s merit.

o NSQ merit. An NSQ’s merit measures its sufferings in
terms of NSQ contention (Line 6). The ratio of the time con-

sumed in contention to the number of submitted requests (i.e.,
ng.in_contention_us
nqg.submitted_rgs
by contention. This ratio is multiplied by the number of

cores claiming usage of this NSQ (nq.claimed_cores), which
is derived from the NSQ’s bitmap of CPU cores (§5.2). Their
product approximates the summation of latency in the worst
scenario, where each core contends for the NSQ. Thus, an
NSQ with higher merit indicates potentially more severe
contention, rendering itself less likely to be selected.

In each step, the merits of NQs are calculated during min-
heap updates, where nqreg re-sorts the min-heap using the
calculated merits of all NQs (Line 13 and 14). Each update
schedules the NQ with the lowest merit as the new top. How-
ever, frequent updates can incur substantial CPU overheads.
To avoid this, nqreg employs the Most-Recently-Used (MRU)
policy. Each min-heap has a mru value to control the update
frequency and remains unchanged until the mru is exhausted.
Each time the top NQ is selected, the mru (initialized with an
empirical value MRU) is decremented by m (Line 11), which
is set by troute based on different contexts.

In the tenant-based context and the request-specific con-
text of tagged T-tenants, troute invokes NQ scheduling

by the queue depth (i.e., ), as these requests are

) represents the per-request latency caused
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to get default or outlier NSQs that regularly handle I/O re-
quests. It sets m to MRU so that each min-heap is updated
and schedules a new top NQ for future requests. This helps
to distribute tenants to use different NQs. In the request-
specific context of normal T-tenants, m is set to 1 in both
steps as the returned NQ is accessed infrequently.

In brief, each step of NQ scheduling selects an NQ that best
fulfills the selection criteria. Consolidated together, nqreg
not only refrains from incurring potential I/O intertwining
but also delivers better performance.

SLA-aware I/O service dispatching. In the submission
and completion process within NQs, nqreg dispatches the
requests’ I/O service routines corresponding to their SLAs.

e Submission. nqreg accelerates the submission process in
high-priority NSQs by immediately notifying the controller
once L-requests are enqueued. For low-priority NSQs that
handle batched T-requests, nqreg postpones the notification
to the controller until each batch of T-requests is enqueued.
o Completion. With the decoupled storage stack, each NQ
only serves requests of the same SLA. Therefore, upon han-
dling request completion IRQs, nqreg distinguishes and dis-
patches completion paths simply based on the priorities of
NCQs, i.e., per-request and batched completion paths for
high-priority and low-priority NCQs, respectively. This ap-
proach saves nqreg from the burden of considering the per-
request priority as seen in cinterrupts [84] and customizes
the completion service routine within each NCQ.

6 Implementation

We implement a prototype of DAREDEVIL in the Linux kernel
v6.1.53, with modifications to the block layer and the NVMe
device driver. Our current prototype is carefully crafted to
optimize only the storage stack of NVMe SSDs attached
to the host via the PCle bus. This ensures that DAREDEVIL
does not affect other types of storage devices, to which it is
inapplicable (e.g., SATA SSDs [70] with only one device I/O
queue). However, integrating the DAREDEVIL into the Linux
kernel is non-trivial, especially considering that troute and
ngreg operate within the critical I/O path. We summarize the
key implementation details of accommodating DAREDEVIL
in the kernel below.

Multi-threaded tenants. In the Linux kernel, each tenant
(i-e., process) is represented by a process descriptor, struct
task_struct, which contains per-descriptor fields like ion-
ice values [9]. Thus, for each task_struct, DAREDEVIL ex-
tracts its SLA information from its fields and assigns the
default or outlier NSQ to it. This implementation extends the
capability of DAREDEVIL to handle multi-threaded tenants at
the thread granularity. Specifically, the Linux kernel treats
threads as lightweight processes. Each thread spawned by
a tenant is also allocated a task_struct associated with its
parent tenant [9, 22]. Utilizing this mechanism, DAREDEVIL
can recognize the spawned threads of each multi-threaded
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tenant and manage them at the thread granularity, assessing
each thread’s SLA and performing request routing accord-
ingly.

Identifying outlier L-requests. As noted in §5.2, DARE-
DEVIL identifies synchronous or metadata requests issued
from T-tenants as the outlier L-requests. This design aligns
with how such requests are managed by the Linux kernel:
at the block layer, requests flagged with REQ_SYNC (synchro-
nous) and REQ_META (metadata) are regarded and served as
high-priority ones (i.e., REQ_HIPRIO). Therefore, DAREDEVIL
directly recognizes outlier L-requests by checking their flags.
Concurrent nqreg queries with NQ scheduling. In re-
quest routing, multiple CPU cores can have tenants requiring
default or outlier NSQs. This means that nqreg can be con-
currently queried by troute, resulting in concurrent NQ
scheduling, i.e., simultaneous NQ heap querying and up-
dating. Without careful consideration, this concurrency can
result in inconsistent NQ heaps, while naively using mutual
exclusion locks (e.g., mutex) can damage DAREDEVIL’s per-
formance. To properly handle this concurrency, we utilize
the lightweight Read-Copy-Update (RCU) synchronization
primitive [87] to protect the NQ heap, based on the following
observations: 1) RCU ensures consistent reads and does not
block reads when synchronizing with updates [62, 87], which
matches the objective of nqreg as it aims for lightweight
NQ heap queries; and 2) RCU is optimized for read-mostly
scenarios [62, 87], which aligns with the purpose of the MRU
policy (i.e., reduce the update frequency) in NQ scheduling.

7 Evaluation

Comparison targets. We compare DAREDEVIL against the
vanilla kernel storage stack and the state-of-the-art storage
stack design, blk-switch [39]. We use the Linux v6.1.53
kernel with blk-mqg and the default noop I/O scheduler en-
abled as vanilla. This is the baseline of our evaluation. For
blk-switch, we carefully migrated its open-source imple-
mentation [33] from v5.4.43 to the v6.1.53 kernel.

Parameter setup. For blk-switch, we set its scheduling
thresholds to its suggested values and enable its highest
optimization level [39]. For DAREDEVIL, we set the weight o
used in NQ scheduling to 0.8, as it achieves the best balance
between leveraging historical and recent information in our
practice. MRU equals the NQ depth, which is 1024 in our
tested SSDs. The min-heaps are updated until accumulated
outlier requests from regular T-tenants reach the NQ depth.
Server setup. We use a server machine (SV-M) equipped
with 64GB DRAM and 64 physical AMD EPYC 7702P proces-
sor cores within one socket, each running at 3.3 GHz. We use
an enterprise-level 3.2TB Samsung PM1735 NVMe SSD that
supports at most 64 NQs and 32 NVMe namespaces. This
SSD is locally attached to the server via the PCle lanes. This
configuration effectively emulates the typical cloud server
setup as commonly observed in prior works [16, 30, 51, 93].



EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands

Dvanilla @blkswitch @daredevil 100

Dvanilla @blkswitch mdaredevil

80 -
60 -
40 +
20 -

L99.9 (ms)
L.Ave (ms)

4 8 16 24

# AT-tenants

32 8

# AT-tenants

16 24 32

(a) L-tenant 99.9'" tail latency. (b) L-tenant average latency.

J. Li, R. Shu, J. Lin, Q. Zhang, Z. Yang, J. Zhang, Y. Xiong, C. Qian

Dvanilla mblkswitch mdaredevil

Dvanilla @blkswitch mdaredevil

12 —
2
el
o 4
=
a 2
=
oo

16 24 4 8 16 24 32
# AT-tenants # AT-tenants
(c) L-tenant I/O rate. (d) T-tenant throughput.

Figure 6. Performance results with increasing T-pressure in SV-M. DAREDEVIL maintains in-time responses for L-tenants even
under extreme T-pressure, while the vanilla kernel and blk-switch significantly inflate the L-tenants’ I/O latency.

Complimentary setup. To evaluate the benefits of NQ
scheduling when the supported NQs outnumber available
CPU cores, which enables more fine-grained NQ scheduling
as introduced in §5.3), we use a complimentary setup in §7.1.
We use a workstation (WS-M) with an Intel 13th Generation
Core 19-13900K processor that comprises 8 P-cores and 16
E-cores. We attach a 2TB Samsung 980Pro NVMe SSD that
supports at most 128 NQs (5% the CPU core count) to this
machine. Note that this setup only aims to demonstrate the
effectiveness of DAREDEVIL in using more NQs. Our major
evaluation is conducted on SV-M, which corresponds to the
server environments targeted by this paper.

Both machines run Ubuntu 22.04 LTS and have their CPU
hyper-threading disabled to minimize uncontrolled distur-
bance. In particular, for WS-M, we only use its P-cores to
reduce interference from asymmetric cores. Before each ex-
periment, we pre-condition the whole disk [85, 92] to ensure
stable SSD internal states.

7.1 Resistance to Severe Multi-tenancy Issue

We evaluate the comparison targets’ performance with the
increasing severity of the multi-tenancy issue, focusing on
whether different tenants’ SLAs are met, especially the low
latency expected by L-tenants. Following the standard prac-
tice of prior works [39, 42, 64, 84], we use the Flexible I/O
Tester (FIO) benchmark [3, 4] to generate I/O requests for
both L- and T-tenants. FIO jobs issuing 4KB random requests
with 1I/0 depth simulate L-tenants, reflecting the random
distribution of small L-requests observed in real-time work-
loads [58]. T-tenants are simulated using FIO jobs that issue
128KB requests with 32 I/O depth. We run 4 L-tenants for
50 minutes, during which the number of T-tenants increases
every 10 minutes to impose higher performance interfer-
ence on L-tenants. All tenants are distributed evenly across a
shared pool of 4 cores and asynchronously issue requests us-
ing the libaio I/O engine. L- and T-tenants are assigned high
(real-time) and low (best-effort) ionice values, respectively.
We use one namespace for the SSD in this experiment.
Figure 6 and Figure 7 show the performance of the targets
running on SV-M and WS-M, respectively. Compared with
the vanilla kernel and blk-switch, DAREDEVIL significantly
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reduces the 99.9'" tail latency and average latency for L-
tenants by up to 3.2X and 33 in SV-M, and 40X and 170x
in WS-M. This means DAREDEVIL satisfies L-tenants’ SLAs
even under very high pressure of interference. Meanwhile,
DAREDEVIL maintains a stable and comparable throughput
to meet the SLAs of T-tenants. In contrast, both vanilla and
blk-switch rapidly inflate the L-tenants as T-pressure rises,
failing to satisfy the SLAs of L-tenants.
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Figure 7. I/O latency with increasing T-pressure in WS-M.

The flexibility of DAREDEVIL benefits efficient multi-
tenancy control by being resilient to HOL blocking of
T-requests. Figure 6¢ shows that under high T-pressure, L-
tenants running on both vanilla and blk-switch can hardly
issue any I/O requests due to blockage from excessive HOL
T-requests within the same NQs. On the contrary, with the
decoupled storage stack and the independent request routing,
DAREDEVIL easily separates L- and T-requests within NQs,
avoiding blocking L-requests.
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Figure 8. The performance of the comparison targets run-
ning on WS-M within the duration of increasing T-pressure.

DAREDEVIL behaves better with more NSQs available
for NQ scheduling. DAREDEVIL achieves more significant
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performance improvement over vanilla and blk-switch in
WS-M (Figure 7) than in SV-M (Figure 6). This is because
WS-M provides more space for request routing. WS-M sup-
ports 128 NSQs and 24 NCQs compared with 64 NSQs versus
64 NCQs in SV-M. Thus, DAREDEVIL obtains more possible
NSQs in WS-M to issue its requests and has at least 5 NSQs
attached to each NCQ. DAREDEVIL can scatter both L- and T-
requests more spread out across the NSQs and facilitates NQ
scheduling, thus achieving further improved performance.

Reliance on cross-core scheduling fails under severe
performance interference. In Figure 6, blk-switch re-
duces L-tenants’ latency under low T-pressure by schedul-
ing T-tenants to proper cores when the scheduling space
is relatively small (e.g., 4 cores and 4 T-tenants). However,
with increasing T-pressure, blk-switch cannot achieve op-
timization and even becomes paralyzed. As shown in Fig-
ure 8, the average latency and throughput keep fluctuating
in blk-switch. This is because blk-switch’s attempts to
perform cross-core scheduling frequently fail due to the high
number of T-tenants and limited cores, incurring overheads
that result in fluctuating performance.
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Figure 9. The 99.9'" tail latency of L-tenants under different
T-pressure with 2,4,8 CPU cores available. The results are
collected from SV-M. WS-M also shows similar patterns.

DAREDEVIL performs consistently regardless of avail-
able CPU cores. Figure 9 shows the comparison targets’
sensitivity to CPU core usage, using L-tenants’ tail latency
as the performance indicator. As troute functions inde-
pendently, DAREDEVIL maintains low latency for L-tenants
regardless of CPU core usage. Particularly, under high T-
pressure, DAREDEVIL performs better with more available
cores while blk-switch worsens its performance. In this
case, more CPU cores overwhelm the cross-core schedul-
ing space of blk-switch but instead, alleviate the burden
of handling the large number of T-tenants in DAREDEVIL,
rendering more CPU power released to utilize its benefits.

DAREDEVIL keeps different tenants’ SLAs despite some
performance degradation. It incurs higher latency under
low T-pressure (e.g., ~0.02-0.06ms in Figure 6b) and delivers
lower throughput under high T-pressure (e.g., 1.7%-25.9%
lower in Figure 6d). In the former case, DAREDEVIL incurs
~2.29% extra CPU costs for L-tenants due to the cross-core
request completion. For the latter, T-tenants receive 0.3X less
CPU utilization in DAREDEVIL because co-located L-tenants
still run normally, consuming host CPU and SSD controller
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resources. Nonetheless, the cross-core overheads are small
and outweighed by the benefits once T-pressure increases; T-
tenants still receive stable and comparable throughput with
only at worst one-fourth degradation.

7.2  Support for Multi-namespace Scenarios

This experiment considers the multi-namespace case, where
each namespace hosts only L- or T-tenants but the multi-
tenancy issue persists (§3.2). We vary the number of created
namespaces by 4, 8, and 12. Using more namespaces can
cause unstable performance due to SSD fragmentation [26,
71]. The ratio of namespaces that serve L- and T-tenants,
i.e,, L-ns and T-ns, is fixed at 1 : 3 considering the relatively
small space occupied by L-tenants [58]. Each L-ns hosts 2
L-tenants, whereas each T-ns hosts 8 T-tenants.

Ovanilla @mblkswitch mdaredevil

Ovanilla mblkswitch @ daredevil

L.Avebgms)
=N B
[eNeNoeNeNe)

4 8 12

# Namespace # Namespace

(a) L-ns 99.9%" tail latency.

Ovanilla mblkswitch mdaredevil

(b) L-ns average latency.

Dvanilla mblkswitch ®daredevil

T.Thput (Gb/s)
o = N W H

4 8 12

# Namespace # Namespace

(c) L-ns I/O rate.

(d) T-ns throughput.

Figure 10. Performance results with different numbers of
namespaces created. DAREDEVIL improves the performance
for L-tenants and maintains comparable throughput.

DAREDEVIL keeps its performance promises under multi-
namespace scenarios whereas vanilla and blk-switch
do not. Figure 10 shows that with more namespaces used,
DAREDEVIL keeps the L-tenants’ tail latency below 10ms and
the average latency around 1ms, reducing them by up to
15.3% and 39.3X compared with vanilla and blk-switch. It
also maintains comparable throughput to that of vanilla. In
contrast, vanilla and blk-switch inflate the I/O latency. This
is because without supporting multi-namespace cases, more
severe I/O interference is incurred within NQs with more
namespaces created, while DAREDEVIL, being aware of this
case, continues to demonstrate effectiveness.

7.3 Understanding the Optimization of DAREDEVIL

We analyze DAREDEVIL’s performance gains by decomposing
its optimization techniques into three subsystems: dare-base
that only enables the decoupled block layer and round-robins
NQs for request routing, dare-sched with NQ scheduling
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enabled atop dare-base, and dare-full, which is tested in §7.1
and §7.2 and adds I/O service dispatching atop dare-sched.

DOdare-base Bdare-sched mdare-full

Odare-base @dare-sched mdare-full

32

4

32

8 16 24 8 16 24
# AT-tenants # AT-tenants

(a) L-tenant 99.9%" tail latency (b) L-tenant average latency with
with increasing T-pressure. increasing T-pressure.

Odare-base B dare-sched @ dare-full Odare-base Bdare-sched mdare-full

8
# Namespace

12

4

8
# Namespace

12

(¢) L-tenant 99.9*" tail latency (d) L-tenant average latency with
with varying namespaces used. varying namespaces used.

Figure 11. The decomposition of DAREDEVIL’s performance
according to its optimization techniques.

Figure 11 shows the latency performance of different
DAREDEVIL subsystems. By adopting the decoupled struc-
ture and simple request routing, dare-base already achieves
comparable tail latency as dare-full (i.e., ~47ms compared
with ~40ms), and maintains a stable low average latency of
below 6ms. A similar pattern is also observed in the multi-
namespace scenario, evidencing the efficiency of decoupling
the storage stack and independent request routing in resist-
ing HOL blockage and enhancing performance.

dare-sched further improves the latency performance atop
dare-base (e.g., 2-4x reduction in average latency), show-
ing the effectiveness of NQ scheduling. However, the opti-
mization of dare-full varies with the T-pressure. dare-full
improves the tail latency except under low T-pressure, but
slightly worsens average latency by at most 18% under high
T-pressure. This is because accelerating L-requests improves
their in-NQ tail latency but consumes extra CPU cycles,
which, under high T-pressure where cores are busy switch-
ing between processing T-tenants, reduces L-tenants’ CPU
resources and thus increases their average latency.

7.4 Real-world Applicability

We select two representative benchmarks to simulate real-
world storage workloads: the Yahoo! Cloud Serving Bench-
mark (YCSB) for cloud workloads and the Filebench [88] for
file operations. We test YCSB workloads of types A, B, E, and
F on RocksDB [29], as they cover various runtime scenarios.
We use the Mailserver workload of Filebench as its opera-
tions involve direct I/O requests to the SSD. The NVMe SSD
is configured with the ext4 file system. Both applications
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are configured per official suggestions and common prac-
tices [12, 14, 21]. Each YCSB workload uses a 64GB database
and issues 4 million requests under the Zipfian distribution.
The Mailserver workload constructs a 100GB directory with
an average file size of 16KB. We regard the processes asso-
ciated with each application as L-tenants, considering that
they aim to promptly serve user requests. We colocate 8 back-
ground FIO jobs issuing streaming I/O as T-tenants along
with the two applications on 4 cores.

RocksDB with YCSB. Figure 12a to Figure 12d present
99.9*" tail latency performance under different YCSB work-
loads. It improves the tail latency of updates in YCSB-A by 2x
compared with blk-switch. In YCSB-F, DAREDEVIL achieves
a reduction compared with vanilla. However, DAREDEVIL
slightly worsens the latency observed by RocksDB in some
workloads (e.g., increases 0.4ms of inserts in YCSB-E).
Mailserver. Mailserver reports the average latency of its
operations, which consist of ones that mainly use ext4 page
caches and ones that directly interact with SSDs. Thus, we ex-
plicitly show the latter (fsync and delete) in Figure 12e. Com-
pared with vanilla and blk-switch, DAREDEVIL improves
the latency by 2-3ms for fsync and 0.5-1.2ms for delete.
Analysis. The performance variation of DAREDEVIL depends
on whether operations directly use the storage stack. RocksDB
read/scan operations mostly target its internal caches, and
cache-related operations account for ~77% of Mailserver
workloads. These operations mainly involve CPUs access-
ing caches. Other operations that affect in-SSD data (e.g.,
RocksDB updates/inserts and fsync of Mailserver), in con-
trast, directly use the storage stack. Therefore, since DARE-
DEVIL focuses on the storage stack optimization, it only im-
proves the performance of the latter operations, such as
YCSB-A and -F with 50% updates, but exhibits little gain on
CPU-intensive cases (e.g., YCSB-B and -E with 95% CPU-
centric operations and Mailserver).

7.5 Overhead Analysis of DAREDEVIL

The performance overheads of DAREDEVIL arise from cross-
core accesses to NQs and frequent updates of base priorities.
In this section, we analyze its overheads in both cases.
Overheads of cross-core NQ accesses. Such overheads
come from NQ entry contention and request dispatching
during submission and completion, respectively (§5.1). We
quantify the overheads and explore their exploitability to
incur unfairness. To this end, we set T-tenants’ priority to
the same as L-tenants, such that they (TL-tenants) share the
same NQs as L-tenants to incur higher cross-core overheads.
We follow the configuration in §7.1, fix the number of TL- or
L-tenants to 12, vary the number of the other, and confine
them to 4 cores and 16 NQs. We interleave NQ accesses
in DAREDEVIL by repeatedly moving tenants across cores
randomly, ensuring each NQ is accessed by multiple cores.
Figure 13 presents L-tenants’ average latency under a
fixed number and varying numbers of TL-tenants. As shown
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Figure 12. Performance results on real-world workloads. Figures (a) to (d) present the 99.9?" tail latency from YCSB workloads
using RocksDB. Figure (e) shows the average latency reported in Mailserver.
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Figure 13. L-tenant average latency under fixed (a and c) sumes them. Nevertheless, such updates exert a relatively

and varying (b and d) TL-tenants. The black line segments small impact on I/O latency as NQ scheduling adopts a light-

represent the standard deviation of latency. weight mechanism (§6). Moreover, the server can effortlessly

limit the update rate of tenants’ base priorities to avoid break-
ing the system performance.

in Figure 13b and Figure 13a, while DAREDEVIL’s scheduling
reduces overheads and stabilizes performance, it inevitably
incurs 1.4-1.6X and 3.3-3.6X higher latency during submis-

8 Discussion

8.1 Limitations of DAREDEVIL

sion and completion. However, the cross-core overheads only Maintaining us-level latency. As shown in §7, the overall
account for at most 1.7% of the overall latency shown in Fig- latency observed by L-tenants in DAREDEVIL, though signifi-
ure 13c and Figure 13d. This is because DAREDEVIL benefits cantly reduced through NQ-level separation, still falls within
from NQ utilization and monitoring cross-core overheads to the scale of ms instead of the us-level expected of NVMe
efficiently distribute tenants among NQs (§5.3): despite TL- SSDs (e.g., 40ms and 5ms for tail and average latencies, re-
and L-tenants sharing NQs, DAREDEVIL’s scheduling manages spectively). The similar scenario is also observed in Figure 2.
to schedule L-tenants to less contended NQs by monitoring This is because in addition to HOL blocking within NQs, the
cross-core overheads. In Figure 13c, with fewer L-tenants, it existence of interference inside SSDs, which is caused by
avoids using the NQs occupied by TL-tenants. In Figure 13d, intricate SSD internal structures and unique I/O behaviors of
its benefits are small as TL-tenants occupy nearly all NQs, flash chips, also accounts for L-requests’ inflated latency. For
leaving little space for scheduling. In this case, improvements instance, T-requests can flood the internal queues of SSDs,
over vanilla stem from utilizing available NQs to serve ten- blocking L-requests [86], and the erase-after-write feature
ants. of flash memory can postpone the service of small reads
Overheads due to updates of tenants’ base priorities. if large chunks of writes are present [42, 48, 91]. Such in-
As mentioned in §5.2, changing tenants’ base priorities in- ternal interference inherently hinders SSDs from providing
vokes re-scheduling their default NSQs, which can hinder the expected us-level latency to L-requests. Addressing this
normal I/O services. To explore the severity of re-scheduling issue demands customized modifications to SSDs’ hardware,
overheads in affecting tenants’ performance, we measure L- which is beyond the ability of DAREDEVIL as a kernel storage
and T-tenants’ performance by continuously updating ionice stack. In this regard, DAREDEVIL is constrained to maintain
values at regular intervals (i.e., 1s to 10us) for 10 minutes. the us-level latency for L-requests.
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Applicability to virtual machines (VMs). Currently, DARE-
DEVIL does not support VMs because applications running in
guest VMs are invisible to the host kernel. Extending DARE-
DEVIL to VMs necessitates a holistic design among the guest
virtio stack, the hypervisor, and the host. Specifically, the
virtio stack can adopt the same decoupled structure, mak-
ing each virtqueue (VQ) serve I/O requests of the same SLA.
Since the requests flowing into guest VQs are transferred to
host NQs for actual I/O services, as proposed by [73], the
hypervisor and the host need to maintain proper mappings
between VQs and NQs, so that each VQ-NQ mapping pro-
vides I/O services consistent with their SLA. We leave this
as future work.

8.2 Deployment of DAREDEVIL

Security implications. As a kernel storage stack, DARE-
DEVIL can be seamlessly integrated into cloud servers. Since
modern servers have already incorporated various security
mechanisms to defend against potential attacks, such as the
privilege control [47, 76, 77] and cgroup [36] of the Linux
kernel and vendor-specific defenders [63, 66], DAREDEVIL is
assumed to operate in trusted environments. For instance,
DAREDEVIL trusts that tenants’ ionice values align with their
SLAs because servers typically launch trustworthy checker
daemons to ensure that user-launched processes are vir-
tuous [34]. Therefore, DAREDEVIL is safe when the server
security mechanisms ensure that all tenants are trusted.
However, if the trusted environments are compromised,
making a denial-of-service (DOS) attack possible, DAREDEVIL
itself, like existing kernel storage stacks (e.g., blk-mq), in-
evitably becomes vulnerable. This vulnerability arises be-
cause defending against such attacks requires efforts from
multiple aspects of the Linux kernel [13] and thus is beyond
the scope of kernel storage stacks.
Extensibility beyond NVMe SSDs. As DAREDEVIL only
requires the device multi-queue feature, its design principles
are not confined to NVMe SSDs but are versatile to multi-
queue I/O devices. For existing multi-queue I/O devices at-
tached to the host via the PCle bus (e.g., smartNIC [64, 79]),
DAREDEVIL is applicable with proper driver modifications to
align with the decoupled block layer structure. For emerging
types of SSDs, such as zoned namespace (ZNS) SSDs [6, 65]
and compute express link (CXL) SSDs [44, 55, 96], DAREDEVIL
can be seamlessly adopted due to their retention of the multi-
queue feature. Nonetheless, as these devices incorporate
features targeting schemes different from DAREDEVIL, the ne-
cessity and implementation details of integrating DAREDEVIL
require case-by-case analysis.

9 Related Work

Linux I/0 scheduling. Existing I/O schedulers [10, 25, 35,
37, 46, 72, 95] control the submission timing of tenants’ I/O
requests, balancing performance and fairness. They focus on
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CPU resource allocation in I/O services, which differs from
the target scope of DAREDEVIL. In addition, their scheduling
algorithms are built upon blk-mq, assuming the static core-
NQ mapping, and thus inherit the same limitations as blk-mg.
Nevertheless, DAREDEVIL is not orthogonal to existing I/O
schedulers, making it non-trivial to reap the full benefits
from both: adapting these schedulers to DAREDEVIL requires
careful consideration of the full connectivity between cores
and NSQs in I/O scheduling. We leave this as future work.
Linux kernel storage stack acceleration. The Linux ker-
nel storage stack suffers from various drawbacks beyond the
inflexibility addressed in this paper. Prior works have aimed
to minimize I/O delays caused by context switches [80] and
holistically collaborate multiple components within the stor-
age stack [39, 49, 56, 101]. They also adapt the stack to utilize
intrinsic device features by offloading certain functionali-
ties to the SSD firmware [43, 86, 90, 98]. These works either
target different aspects from DAREDEVIL, or require specific
hardware modifications infeasible in commodity SSDs.
Software-based resource partitioning. In addition to ker-
nel mechanisms for multi-tenancy control, cloud vendors
deploy centralized resource controllers in their user-space
runtime. Similar to kernel I/O schedulers, these controllers
aim to fairly and efficiently distribute host CPU resources
among tenants [15, 31, 41, 52, 81]. Thus, as they operate
within user space, their management of user applications
complements DAREDEVIL’s kernel-space solution.

10 Conclusion

In this paper, we introduce DAREDEVIL, a novel kernel stor-
age stack designed for flexible and efficient multi-tenancy
control of NVMe SSDs. DAREDEVIL achieves this by decou-
pling the static mapping between CPU cores and NQs, inte-
grating a lightweight request routing scheme, and incor-
porating the NQ scheduling mechanism. Our evaluation
demonstrates that with these innovations, DAREDEVIL de-
livers significant performance improvement over existing
kernel storage stacks in multi-tenant I/O services.
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A Artifact Appendix
A.1 Abstract

DAREDEVIL is a Linux kernel storage stack for NVMe SSDs.
It achieves flexibility and efficiency in mitigating the multi-
tenancy issue by decoupling the statically structured blk-mq
block layer. We have implemented DAREDEVIL atop the 6.1.53
Linux kernel, with modifications to the block layer and the
NVMe driver. In this section, we provide description of our
implementation for DAREDEVIL, along with the experimental
setup to produce the results.

A.2 Description & Requirements

A.2.1 How to access. We have open sourced DAREDEVIL
at https://github.com/HKU-System-Security-Lab/Daredevil,
which is the preferred way, and https://zenodo.org/records/
14928153 (DOI link: https://doi.org/10.5281/zenodo.14928153).

A.2.2 Hardware dependencies. DAREDEVIL only requires
a functional machine with local NVMe SSDs attached via
the PCle bus. While SSDs with more available NVMe I/O
queues are preferred, there are no constraints on vendors,
types, and other hardware features.

A.2.3 Software dependencies. We have compiled a DARE-
DEVIL-enabled Linux kernel using gec 9.4.0 and tested it on
Ubuntu 22.04 LTS. However, DAREDEVIL does not require
extra software dependencies other than those needed to
compile a Linux kernel.

A.2.4 Benchmarks. We use Flexible I/O tester (FIO) of
version 3.38.4, RocksDB, and Yahoo! Cloud Serving Bench-
mark (YCSB) of version 0.17.0 in our evaluation.

A.3 Set-up

We have provided a detailed setup description under the
README.md file of DAREDEVIL’s github repository (https://

github.com/HKU-System-Security-Lab/Daredevil/blob/master/

README.md). Please refer to it for setting up and testing
the functionality of DAREDEVIL.

A.4 Evaluation workflow

The scripts to conduct the experiments described in this
paper are provided under "Daredevil/eval". It contains a

README file "Daredevil/eval/README.md" that cross-references

the evaluation scripts with the figures shown in the paper.
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